марс
Первой удавшейся Советской марсианской миссией была отправка на «красную планету» автоматической межпланетной станции третьего поколения Марс-2. Марс-2 предназначалась для исследования Марса как с его орбиты, так и непосредственно с поверхности планеты.
Марс-2
АМС состояла из орбитальной станции (искусственный спутник для исследования Марса) и спускаемого аппарата. Навигация в Космосе осуществлялась при помощи ориентации на Солнце, звезду Канопус и Землю. Советский Союз планировал осуществить серьёзные исследовательские работы на Марсе, для этого на АМС находилось всё необходимое оборудование: инфракрасный фотометр для изучения рельефа поверхности по измерению количества углекислого газа, ультрафиолетовый фотометр для определения плотности плотности верхней атмосферы. Счётчик частиц космических лучей и многие другие приборы. Спускаемый аппарат также был автоматизирован и настроен на автономную работу и управление.
Станция была запущена с космодрома Байконур 19 мая 1971 года. Полёт станции к Марсу длился более 6 месяцев. Полёт осуществлялся по программе и, как говорится, ничто не предвещало беды, только на последнем этапе (самом важном, стоит признать), из-за неверных расчётов, спускаемый аппарат вошёл в атмосферу под углом больше заданного, парашютная система была в таких условиях неэффективной и, пройдя сквозь атмосферу Марса, аппарат разбился. К чести нашей страны, наш спускаемый аппарат, хоть и потерпел крушение, всё же стал первым искусственным предметом на планете. Орбитальная станция же свыше восьми месяцев осуществляла комплексные исследования Марса, совершив за время работы 362 оборота вокруг планеты.
Марс-3
Следующая русская марсианская миссия оказалась более успешной. При разработке программы Марса-3 были учтены недочёты предыдущего запуска. Запущенная через 9 дней после Марса-2, станция Марс-3 через полгода успешно достигла марсианской орбиты. Спускаемый аппарат впервые в истории совершил мягкую посадку на поверхность «красной планеты».
После полутора минут подготовительного периода, аппарат приступил к работе и начал транслировать панораму окружающей поверхности, но через 14 с половиной секунд «марсианское шоу» закончилось. «Шоу» это, конечно можно назвать с большой натяжкой: АМС передала только первые 79 строк фототелевизионного сигнала, представлявшие из себя серый фон без единой детали, то же произошло и с трансляцией со второго телефотометра. Предполагались разные версии некорректной работы устройств: коронный разряд в антеннах передатчика, повреждение аккумуляторной батареи… но окончательное решение о причинах неудачи принято не было. Не иначе, Марсиане что-то намудрили.
Марс-4
21 июля 1973 года с космодрома Байконур была запущена АМС Марс-4. Через 204 суток после старта, 10 февраля 1974 года КА пролетел на расстоянии 1844 км от поверхности Марса. За 27 минут до этого момента были включены однострочные оптико-механические сканеры — телефотометры, с помощью которых проведена съемка панорам двух областей поверхности Марса (в оранжевом и красно-инфракрасном диапазонах).
Впервые в практике отечественной космонавтики в полёте участвовали четыре космических аппарата. На Марс-4 возлагалось много задач: изучение распределения водяного пара по диску планеты, определение газового состава и плотности атмосферы, измерение потоков электронов и протонов на трассе полёта и у планеты, исследования спектров собственного свечения атмосферы Марса и множество других. Главной задачей Марса-4 был выход на связь с автоматическими станциями на поверхности Марса. КА «Марс-4» провел фотографирование Марса с пролетной траектории. На фотоснимках поверхности планеты, отличающихся весьма высоким качеством, можно различить детали размером до 100 м. Это ставит фотографирование в число основных средств изучения планеты. При его помощи с использованием цветных светофильтров путем синтезирования негативов получены цветные изображения ряда участков поверхности Марса. Цветные снимки также отличаются высоким качеством и пригодны для ареолого-морфологических и фотометрических исследований. К сожалению, всех возложенных на него задач Марс-4 не выполнил.
Марс-5
Запуск АМС Марса-5 был осуществлён через четыре дня после запуска Марса-4. Задачи, которые ставились перед ним не сильно отличались от предыдущей миссии. Станция «Марс-5» успешно вышла на орбиту вокруг планеты, однако сразу же произошла разгерметизация приборного отсека, в результате чего работа станции длилась лишь около двух недель. Научные приборы, размещенные на станции «Марс-5», предназначались, главным образом, для изучения ряда важнейших характеристик поверхности планеты и околопланетного пространства с орбиты. Аппарат был оснащён лайман-альфа-фотометром, сконструированным совместно советскими и французскими учёными, и предназначенным для поиска водорода в верхних слоях атмосферы Марса. Установленный на борту магнитометр производил измерения магнитного поля планеты.
Для измерения температуры поверхности предназначался инфракрасный радиометр, работавший в диапазоне 8—40 мк. Искусственный спутник Марса КА «Марс-5» передал на Землю новые сведения о планете и окружающем её пространстве; с орбиты спутника получены качественные фотографии марсианской поверхности, в том числе цветные. Исследования магнитного поля в околомарсианском пространстве, проведенные аппаратом, подтвердили вывод, сделанный на основании аналогичных исследований КА «Марс-2,-3», о том, что вблизи планеты существует магнитное поле порядка 30 гамм (в 7-10 раз больше величины межпланетного невозмущенного поля, переносимого солнечным ветром). Предполагалось, что это магнитное поле принадлежит самой планете, и «Марс-5» помог получить дополнительные аргументы в пользу этой гипотезы. По аналогичным измерениям с борта КА «Марс-5» впервые непосредственно измерена температура атомарного водорода в верхней атмосфере Марса. Предварительная обработка данных показала, что эта температура близка к 350°К.Несмотря на то, что работа станции продолжалась недолго, за время её работы были получены многочисленные сведения о Марсе, его атмосфере и магнитном поле.
Марс-6
Ещё один наш спускаемый аппарат оказался на Марсе благодаря АМС Марс-6, запущенной с космодрома Байконур 5 августа 1973 года. Печально, но и на этот раз мягкой посадки не произошло. Во время спуска не было цифровой информации с прибора МХ 6408М, зато с помощью приборов «Зубр», ИТ и ИД была получена информация о перегрузках, изменении температуры и давления. Непосредственно перед посадкой связь с СА потеряна.
Последняя полученная с него телеметрия подтвердила выдачу команды на включение двигателя мягкой посадки. Новое появление сигнала ожидалось через 143 секунды после пропадания, однако этого не произошло, однако данные, полученные во время спуска, уже принесли значительные результаты и внесли большой вклад в изучение Марса. Спускаемый аппарат Марса-6 совершил посадку на планету, впервые передав на Землю данные о параметрах марсианской атмосферы, полученные во время снижения. Марс-6 проводил измерения химического состава марсианской атмосферы при помощи масс-спектрометра радиочастотного типа. Вскоре после раскрытия основного парашюта сработал механизм вскрытия анализатора, и атмосфера Марса получила доступ в прибор. Предварительный анализ позволяет сделать вывод, что содержание аргона в атмосфере планеты может составлять около одной трети. Этот результат имеет принципиальное значение для понимания эволюции атмосферы Марса. На спускаемом аппарате осуществлялись также измерения давления и окружающей температуры; результаты этих измерений весьма важны как для расширения знаний о планете, так и для выявления условий, в которых должны работать будущие марсианские станции.
Совместно с французскими учеными выполнен также радиоастрономический эксперимент – измерения радиоизлучения Солнца в метровом диапазоне. Прием излучения одновременно на Земле и на борту космического аппарата, удаленного от нашей планеты на сотни миллионов километров, позволяет восстановить объемную картину процесса генерации радиоволн и получить данные о потоках заряженных частиц, ответственных за эти процессы. В этом эксперименте решалась и другая задача – поиск кратковременных всплесков радиоизлучения, которые могут, как предполагается, возникать в далеком космосе за счет явлений взрывного типа в ядрах галактик, при вспышках сверхновых звезд и других процессах.
Марс-7
Марс-7 был запущен 9 августа 1973 года. Эта марсианская миссия оказалась неудачной. Спускаемы аппарат прошёл в 1400 километрах от поверхности Марса и ушёл в космос. Таким образом, целевая программа Марса-7 не была выполнена, но, совершая автономный полёт, спускаемый аппарат сохранял работоспособность и передавал информацию на пролетный аппарат по радиолиниям КД-1 и РТ-1. С пролетным аппаратом Марса-7 связь поддерживалась до 25 марта 1974 года.
При работе Марса-7 в сентябре-ноябре 1973 года зафиксирована связь между возрастанием потока протонов и скорости солнечного ветра. Предварительная обработка данных КА Марс-7об интенсивности излучения в резонансной линии атомарного водорода Лайман-альфа позволила оценить профиль этой линии в межпланетном пространстве и определить в ней две компоненты, каждая из которых вносит приблизительно равный вклад в суммарную интенсивность излучения. Полученная информация даст возможность вычислить скорость, температуру и плотность втекающего в солнечную систему межзвездного водорода, а также выделить вклад галактического излучения в линии Лайман-альфа. Этот эксперимент выполнялся совместно с французскими учеными.
Проект Фобос
Проект «Фобос» был следующим этапом изучения Марса и его спутника. Он был начат на волне успешного сотрудничества с западными научными организациями в рамках проекта АМС «Вега». Несмотря на то, что основная задача проекта осталась невыполненной, а планировалась доставка на спутник Марса спускаемых аппаратов, проект принёс результаты. Исследования Марса, Фобоса и околомарсианского пространства, выполненные в течение 57 дней на этапе орбитального движения вокруг Марса, позволили получить уникальные научные результаты о тепловых характеристиках Фобоса, плазменном окружении Марса, взаимодействии его с солнечным ветром.
Например, по величине потока ионов кислорода, покидающих атмосферу Марса, обнаруженных при помощи спектрометра ионов, установленного на КА Фобос-2, удалось оценить скорость эрозии атмосферы Марса, вызванной взаимодействием с солнечным ветром.На этом советская программа изучения Марса завершилась. Запуск следующего, уже российского, аппарата для исследования Марса — станции «Марс-96» в 1996 году — закончился неудачей. Запуск следующего российского аппарат для исследования Марса и его спутников (Фобос-грунт) состоялся 9 ноября 2011 года. Основная цель этого аппарата — доставка образца грунта Фобоса на Землю. В тот день аппарат вышел на опорную орбиту, однако по каким-то причинам команда на включение маршевой двигательной установки не прошла. 24 ноября были официально прекращены попытки восстановить работоспособность, а в феврале 2012 года аппарат неуправляемо вошел в плотные слои атмосферы, и упал в океан.
источник
Исландия похожа на таинственную сказку. Здесь оживают образы злобных троллей и прекрасных эльфов, которые так нравятся детишкам и, конечно же, удивительной красоты ледяные просторы, бьющие из-под земли гейзеры и марсианские пустынные пейзажи, напоминающие кадры из фантастических фильмов, поражающие своей ирреальностью. Испанскому фотографу Аль Мэфэр (Al Mefer) выпал шанс посетить столь волшебную страну, а так же сделать несколько десятков фотографий, глядя на которые начинаешь верить в чудеса…
Исландские козочки. Автор: Al Mefer.
Дымка. Автор: Al Mefer.
Марсианские хроники. Автор: Al Mefer.
Великолепная Исландия. Автор: Al Mefer.
Голубые льды. Автор: Al Mefer.
Розовый закат. Автор: Al Mefer.
Фантастические пейзажи Исландии. Автор: Al Mefer.
Розовые горы. Автор: Al Mefer.
Горная река. Автор: Al Mefer.
Все оттенки розового. Автор: Al Mefer.
Багрянные горы. Автор: Al Mefer.
Ирреальные пейзажи Исландии. Автор: Al Mefer.
Безусловно, окружающий нас мир удивителен и прекрасен. И порой трудно поверить в то, что всё происходящее вокруг – настоящее.
Источник:
Древние китайские астрономы называли Марс «Огненной звездой», и ученых еще долго будет «сжигать» любопытство относительно некоторых вещей, связанных с Красной планетой.
Даже после того, как десятки космических аппаратов были направлены к Марсу для исследований, многие вопросы остались без ответа.
Узнайте о самых больших загадках Марса, которые еще предстоит разгадать.
1. Почему у Марса два «лица»?
Ученые в течение нескольких десятков лет были озадачены разницей между двумя сторонами Марса. Северное полушарие планеты – гладкое и низкое – это одно из самых гладких и ровных мест на планетах Солнечной системы. Потенциально оно могло образоваться из-за воды, которая когда-то плескалась на марсианской поверхности.
В то же время южная половина Марса – неровная и вся изрезана кратерами. Она примерно на 4-8 километров выше, чем северная часть. Недавние исследования предполагают, что такие различия между южной и северной сторонами планеты могли быть связаны с гигантским космическим телом, которое могло когда-то очень давно упасть на поверхность Марса.
2. Есть ли на Марсе жидкая вода?
Хотя большое количество свидетельств указывает на то, что на Марсе когда-то была жидкая вода, существует ли она сегодня – пока остается тайной. Атмосферное давление на Марсе очень низкое, примерно в 100 раз меньше давления на Земле, поэтому вряд ли жидкая вода может сохраниться на поверхности Красной планеты. Однако темные длинные линии, которые мы можем видеть на поверхности Марса, намекают на то, что соленые потоки воды могут течь по ним каждую весну.
3. Жизнь на Землю пришла с Марса?
Метеориты, которые были обнаружены в Антарктиде, прибыли на нашу планету с Марса. Они откололись от Красной планеты во время ее столкновений с другими космическими объектами. Эти метеориты имеют структуры, которые напоминают структуры, созданные земными микробами. Хотя многие исследования говорят о том, что, скорее всего, эти структуры получены химическим путем, споры в ученом мире продолжаются. Некоторые исследователи полагают, что жизнь на Землю была занесена с Марса давным-давно, и ее могли перенести сюда именно метеориты.
4. Есть ли жизнь на Марсе?
Первый космический аппарат, удачно приземлившийся на поверхности Марса – Викинг 1 НАСА – первым попытался раскрыть тайну о том, есть ли на Красной планете жизнь, однако до сих пор ответа на этот вопрос не получено. Сегодня этот вопрос волнует исследователей Марса во всем мире. Викингу удалось обнаружить органические молекулы, такие как метилхлорид и дихлорметан. Впрочем, позже выяснилось, что это были земные примеси, которые входили в состав чистящих жидкостей при подготовке аппарата на Земле.
Там где имеется жидкая вода на Земле – жизнь есть везде, поэтому ученые считают, что если на Марсе есть вода, там непременно должна быть жизнь. Когда ученые ответят на вопрос, есть ли жизнь на Марсе, они смогут пролить свет на ряд других вопросов, которые остаются сегодня без ответа, например, может или не может жизнь зародиться в других частях Вселенной.
5. Могут ли земляне жить на Марсе?
Еще в 1969 году у НАСА имелись планы организации к 1981 году миссии по отправке человека на Марс, чтобы основать там постоянную марсианскую станцию к 1988 году. Однако межпланетные путешествия с участием человека оказались не такой уж простой задачей как с научной, так и с технической точек зрения.
Тем не менее, астронавты давно уже мечтают о подобных полетах. Например, волонтеры согласились жить около года на космическом корабле. Это была самая длительная симуляция космических полетов, которая была когда-либо разработана, целью которой было воспроизвести в земных условиях то, какой может быть миссия к Марсу от начала и до конца.
6. Марс похож на Землю.
Сейчас существует мнение, что небо на Марсе абсолютно голубое, а земля на Марсе походит на нашу. Да к почему же НАСА предоставлет нам фото Марса через красные фильтры? Лучше один раз увидеть, чем 100 раз услышать.
Этот фильм о настоящем цвете Марса, который имеет далеко не официальный — красный цвет, а почти земные, естесственные нам, людям Земли, цвета — вплоть до приятного синего неба… Вам не нужно в это верить или думать, что это очередной обман — Вы можете прямо сейчас всё проверить сами и убедиться в этом, просмотрев этот фильм.
Планетологи НАСА с помощью спутника на околомарсианской орбите определили точную причину превращения Красной планеты в безжизненную пустыню. Оценив объемы атмосферы, потерянные из-за солнечного ветра, ученые установили, что этого было достаточно для исчезновения с поверхности жидкой воды. «Лента.ру» подробно рассказывает об исследовании, опубликованном в журнале Science.
У близкой к Солнцу звезды обнаружили семь двойников Земли
Марс — одна из ближайших к Земле планет. В отличие от Венеры, чью плотную и горячую атмосферу не выдерживают даже исследовательские аппараты, Красная планета более комфортна для людей, которые в будущем, скорее всего, прогуляются в скафандрах по ее поверхности. Более того, все новые исследования подтверждают, что на Марсе когда-то текли реки, а воздух там был не таким разреженным. На это, например, указывают недавно открытые следы гигантских волн, которые могли быть вызваны падением астероида.
Обилие воды и кислорода, возможно, создавало среду, пригодную для жизни. Некоторые ученые предполагают, что 3,5-2,5 миллиарда лет назад на Марсе могла существовать биосфера. Однако сейчас планета представляет собой безводную пустыню. По оценкам планетологов, Марс почти полностью лишился воды несколько десятков миллионов лет назад. Когда на Земле жили динозавры, на Красной планете, возможно, еще существовали редкие озера. Не радует и разреженная атмосфера, состоящая преимущественно из углекислого газа и неспособная защитить гипотетических микробов от ионизирующего излучения.
Что же вызвало глобальную катастрофу, превратившую богатую водой планету в царство пыльных бурь? Ученые давно пытаются ответить на этот вопрос, и не из праздного любопытства. Это поможет понять будущее Земли, на которую, по мнению исследователей, Марс был в свое время очень похож. Планетологи полагают, что все дело в резком изменении глобального климата из-за слабого электромагнитного поля и утраты атмосферы.
Марс с жидкой водой
Атмосфера Марса продолжает улетучиваться в космос. Изучение этого процесса и реконструкция климатических изменений прошлого проводится в рамках космической программы НАСА Mars Scout. К Красной планете отправили спутник MAVEN (Mars Atmosphere and Volatile Evolution) для наблюдения за атмосферой. Цель проекта — выяснить, какую роль сыграла потеря газов в превращении планеты в пустынный мир.
Объем потерь можно определить, рассчитав соотношение легких и тяжелых изотопов, например аргона. Газ, уходящий в космос, уносит преимущественно легкие ядра атомов (Ar36), и в атмосфере преобладают тяжелые (Ar38). Их повышенные концентрации в атмосфере Марса были выявлены специалистами НАСА еще в 2013 году. Спутник MAVEN, вышедший на орбиту вокруг Красной планеты в 2014 году, позволил подробнее раскрыть процессы, происходящие в верхних слоях газовой оболочки Марса.
Механизм улетучивания аргона достаточно прост. Солнечный ветер ускоряет ионы, в верхних слоях атмосферы они сталкиваются с атомами аргона и отбрасывают их в космос. Этот процесс одинаков для изотопов Ar38 и Ar36. Почему возникают различия? Дело в том, что более легкий изотоп Ar36 достаточно быстро проникает в верхние слои атмосферы и поэтому в изобилии присутствует на уровне экзобазы, выше которой частицы могут беспрепятственно покидать планету, не сталкиваясь друг с другом. В результате этот изотоп уходит в космос в больших количествах, чем Ar38.
Спутник MAVEN
Изображение: NASA
Для определения концентрации изотопов в атмосфере использовался построенный в космическом центре Годдарда нейтральный и ионный масс-спектрометр (NGIMS). MAVEN выполнял измерения на разных высотах, в том числе на высоте 150 километров от поверхности. В результате исследователи установили уровень экзобазы и турбопаузы. Турбопауза — это слой атмосферы над гомосферой, где преобладают турбулентные перемешивания газов, и под гетеросферой, где доминирует молекулярная диффузия.
Высоту турбопаузы определили следующим образом. Взяли данные о соотношении N2/Ar40 у поверхности Марса (1.25), полученные марсоходом Curiosity. Поскольку в гомосфере газы хорошо перемешиваются, это соотношение должно быть одинаковым вплоть до турбопаузы. MAVEN многократно измерил N2/Ar40 на разных высотах и выявил корреляцию: чем больше высота, тем больше соотношение (азот легче аргона 40). Оставалось лишь экстраполировать результат на нижние слои атмосферы, куда спутник не мог добраться, — вплоть до значения, равного 1.25. Высота, на которой это произошло, и была высотой турбопаузы.
Установив уровень турбопаузы и экзобазы, ученые определили соотношение изотопов аргона между ними. Как и следовало ожидать, этот слой атмосферы был обогащен Ar38. На основе этого соотношения и рассчитали объем потери газов. При этом пришлось учитывать то, что какое-то количество изотопов попадало в атмосферу благодаря вулканической активности, ударам астероидов и выветриванию пород. Окончательное значение доли аргона, ушедшего в космос, во всем количестве этого газа, когда-либо присутствовавшего в атмосфере, оказалось равно 66 процентам.
Тонкая атмосфера Марса
Фото: NASA
Эти результаты планетологи применили для расчета примерных потерь других газов. Так, сделан вывод о том, что из атмосферы из-за столкновения с ионами могло уйти 10-20 процентов углекислого газа. Потери кислорода были более катастрофичными, и последствия зависели от того, какой газ был источником улетучившегося кислорода. Если это диоксид углерода, то тогда потери CO2 в 30 раз превышают первоначальную оценку. В итоге давление могло снизиться более чем на одну атмосферу. Если же кислород находился в составе водяного пара, то больше потерялось воды.
Ранняя атмосфера Марса, по мнению ученых, была плотной и содержала достаточно CO2, чтобы парниковый эффект позволил воде на поверхности планеты существовать в жидком виде. Проведенное исследование показывает, что Красная планета превратилась в пустыню из-за потери значительной части газовой оболочки. И это не считая того, что Солнце миллионы лет назад могло быть более активным, что только увеличивает объемы выдуваемой атмосферы.
Александр Еникеев
Источник:
На протяжении десятилетий Красная планета
является лакомым кусочком для земных учёных. Все мы в глубине души мечтаем однажды ступить на поверхность Марса, но пока что его бескрайние просторы бороздит лишь одинокий ровер Кьюриосити. С орбиты планету регулярно фотографируют несколько исследовательских аппаратов, один из которых — Mars Reconnaissance Orbiter. На основе фотографий с его камеры HiRISE талантливый финский режиссёр Ян Фрёйдман создал удивительное видео полёта над поверхностью пока недосягаемой для нас планеты. Предлагаем вам посмотреть этот короткометражный фильм.
Фрёйдман потратил три месяца на то, чтобы обработать более 50 000 стереоскопических снимков в высоком разрешении, а затем на их основе создать завораживающее видео полёта над поверхностью Марса. Медитативная музыка лишь дополняет и без того впечатляющую картину. Изначально фотографии были чёрно-белыми, поэтому режиссёру пришлось перекрашивать их вручную, основываясь на снимках с других орбитальных аппаратов. Так, кадр за кадром, Ян совмещал снимки между собой до тех пор, пока из них не вышло видео полёта над поверхностью Марса. Согласитесь, что у него получилось очень и очень впечатляюще?
40 лет назад Дубай был крошечной рыбацкой деревушкой, где жили ловцы жемчуга, а дороги были посыпаны гравием. Теперь это самый большой и красивый футуристический город в мире, настоящая жемчужина Объединенных Арабских Эмиратов. Город заслуженно носит репутацию места, где воплощаются в жизнь самые амбициозные проекты — вспомнить хотя бы пожарников с джетпаками и и самое высокое здание в мире! Сейчас ОАЭ задумали новый, еще более смелый и грандиозный прорыв — они хотят построить город на Марсе.
Во вторник, по результатам Всемирного правительственного саммита, который прошел в Дубае, вице-президента и премьер-министра ОАЭ и эмира Дубая шейха Мохаммеда бин Рашида Аль Мактума объявил о том, что страна собирается создать «мини-государство и своего рода коммуну» на Марсе с целью дальнейшего «международного сотрудничества». Аль Мактума объявил, что он и его брат (первый президент страны и наследный принцу Абу-Даби Мухаммед бен Заид) собираются внести свой вклад в глобальную программу по освоению Солнечной системы, и целью стала колонизация Красной планеты.
Проект города носит название «Марс 2117», так что Аль Мактума четко дал понять, что его строительство начнется совсем не в ближайшее время. Детали строительства пока не разглашаются, но, впрочем, у ОАЭ есть целое столетие, чтобы воплотить идею в жизнь. Телеканал CNBC сообщает, что на данный момент запланирован город, размер которого примерно соответствует Чикаго, а население составляет 600 000 человек.
Созданное в 2014 году космическое агентство ОАЭ планирует отправить орбитальный аппарат «Hope» на Марс в 2021 году. Как показывает история, Красная планета — это место не для слабаков: на сегодняшний день только США смогли осуществить успешную посадку своего зонда на планету, хотя Россия и Европа тоже прилагали для этого все усилия. Разумеется, многие ученые относятся к проекту Эмиратов скептически: существует огромное количество различных аспектов, от создания необходимой инфраструктуры до обеспечения марсианских колонистов всеми необходимыми ресурсами, чтобы «город на Марсе» сейчас был практически невозможной для воплощения затеей. С другой стороны, в ОАЭ, в отличие от России и США, нет такого количества чиновников и бюрократов, так что тормозить работу космических агентств и научно-исследовательских центров никто не станет.
У ОАЭ есть деньги, время и все условия для того, чтобы начать разработку проекта уже сейчас. Если через 100 лет какая-то страна и построит город будущего на поверхности Марса, то это будет та страна, которая уже сейчас смогла превратить обычную деревню в невероятной красоты город на Земле.
источник
Как только люди поняли, насколько не пригодны для жизни Марс, Венера, да вообще вся Солнечная система, они захотели придумать, как это можно исправить. Есть специальное слово, означающее работу над планетой с целью сделать ее более похожей на Землю: «терраформирование».
Если вы хотите подправить Марс, все, что вам нужно сделать, — это сгустить атмосферу и подогреть ее до того уровня, при котором там будут выживать земные организмы. С Венерой нужно сделать противоположное — охладить и уменьшить атмосферное давление.
Но очень трудно укладываются в голове масштабы подобного мероприятия. Мы говорим о попытках изменить непостижимо огромный атмосферный объем. Атмосферное давление на поверхности Венеры в 90 раз выше давления на Земле. Это диоксид углерода, так что вам понадобятся кое-какие химические элементы, чтобы избавиться от него, например, магний или кальций. Если вы сможете добыть их в количестве в четыре раза большем, чем масса астероида Веста, тогда это будет возможно.
Между тем, в последние несколько тысяч лет мы играем активную роль в эволюции развития культурных растений и домашних животных, которых мы едим и о которых заботимся. Наши домашние питомцы собаки выглядят совершенно иначе, чем предок-волк, от которого они произошли. Мы увеличили урожайность кукурузы и пшеницы, модифицировали фрукты и овощи и превратили куриц в неспособные летать самодвижущиеся мясные грудки.
А в последние несколько десятилетий мы получили новый и самый могущественный инструмент для изменения жизни под наши нужды: генетическую модификацию. Вместо того чтобы ждать эволюционных изменений и заниматься селекцией с целью получить необходимые результаты, мы можем переписывать генетические коды разных форм жизни, заимствовать положительные свойства одного вида и вставлять их в код другого вида.
Можем ли мы адаптировать земную жизнь под условия на Марсе? Оказывается, наши самые устойчивые организмы не так уж и далеки от этого. В ходе собрания Американского общества микробиологии в 2015 году, исследователи продемонстрировали, как хорошо устойчивые бактерии могут чувствовать себя в марсианских условиях. Они обнаружили, что четыре вида метаногенов могут быть в состоянии выжить под поверхностью, потребляя водород и углекислый газ и выделяя метан.
Другими словами, при определенных условиях некоторые земные формы жизни могут выжить на Марсе уже сейчас. На самом деле, в процессе изучения Марса мы поняли, что он влажнее, чем предполагалось ранее, так что мы рискуем случайно заразить планету нашими собственными микробами.
Но когда мы представляем себе жизнь на Марсе, мы думаем не о горстке устойчивых метагенов, борющихся за жизнь под соленым реголитом. Нет, мы воображаем растения, деревья и зверьков, снующих вокруг.
Есть у нас что-нибудь вроде этого, что мы могли бы модифицировать?
Оказывается, что у формаций лишайников, симбиотических сочетаний грибов и водорослей, есть шанс. Вы, возможно, видели лишайники на скалах и в других местах, не подходящих для всех остальных форм жизни. И, согласно Жану-Пьеру де Вера (Jean-Pierre de Vera) и Институту планетных исследований при Аэрокосмическом центре Германии в Берлине, земные лишайники, которые достаточно устойчивы для этого, существуют.
Они поместили лишайник в экспериментальную среду, которая имитировала поверхность Марса: низкое давление, углекислая атмосфера, суровые морозы и высокая радиация. Единственное, чего они не смогли воспроизвести, — это галактическое излучение и низкая гравитация.
В самых жестких условиях лишайник едва выживал, с трудом цепляясь за жизнь. Но в более мягком варианте марсианских условий, спрятавшись в скальных трещинах, лишайник продолжал выполнять свой обычный фотосинтез.
Кажется, лишайник тоже готов отправиться на Марс.
Метаногены и устойчивый лишайник — это, конечно, не совсем то, что прекрасный тенистый лес. Во вторую очередь я собираюсь поговорить о том, что мы можем сделать, чтобы подправить земные формы жизни для существования и процветания на Марсе. Но в первую очередь я бы хотел поблагодарить Цаха Канцлера (Zach Kanzler), Джереми Пэйна (Jeremy Payne), Джеймса Крейвера (James Craver), Майка Дженсена (Mike Janzen) и всех остальных наших 709 спонсоров, за их щедрую поддержку. Если вам нравится то, что мы делаем, и вы хотите помочь, зайдите сюда.
Если ныне существующая земная жизнь не справится с работой, что ж, нам всего лишь надо будет приспособиться самим. Так же, как мы это уже делали в прошлом, используя селекцию, и более современным способом — с помощью коррекции самого ДНК.
Если не вносить радикальные изменения в марсианскую среду, чтобы сгустить атмосферу Марса и поднять уровень температур, немыслимо, что мы когда-либо сможем адаптировать что-нибудь более сложное, чем бактерии или лишайники, к выживанию на Марсе. Но если они создадут для нас базу, а другие технологии помогут улучшить состояние среды, станет возможным постепенно двигаться в нужном направлении.
Даже на защищенных участках в пределах Марсианских колоний наши нынешние растения и животные, скорее всего, не справятся с задачей.
Реголит Марса, к примеру, содержит ядовитые перхлораты, которые убили бы любые земные растения, осмелившиеся там укорениться. Но на земле есть формы жизни, которые обожают перхлораты и, вероятно, реально создать организмы, которые будут вытягивать ядовитые вещества из реголита и превращать их во что-то полезное, например, в ракетное топливо.
Земные растения и животные живут согласно 24-часовому дневному циклу, но на Марсе сутки на 40 минут дольше, чем на Земле. Мы можем выращивать растения при искусственном освещении, но если мы хотим использовать естественный марсианский свет, то не исключено, что потребуется некоторая адаптация.
Возможно, самый большой риск, с которым мы столкнемся, живя на Марсе, это более низкая гравитация. Неизвестно, хорошо ли отразится на нас жизнь при гравитации 38% от земной поколение за поколением. Мы знаем, что сможем несколько лет пробыть на Марсе, но сможет ли, например, беременность завершить полный цикл при такой низкой силе притяжения?
Мы просто не знаем. Чтобы выяснить это безопасно, мы должны создать вращающуюся космическую станцию и поселить там колонии, так мы сможем изменять гравитацию и смотреть, что происходит с животными, которые несколько поколений жили при низкой гравитации.
Если возникнут проблемы со здоровьем, мы можем опереться на результаты этих исследований и модифицировать генетический код для лучшей адаптации к этим условиям. А так как люди — это тоже животные, извлеченный опыт поможет нам и самим адаптироваться и быть более подготовленными к выживанию на Марсе, навсегда.
Вот ссылка на чудесное видео канала Kurzgesagt о состоянии генной инженерии и впечатляющей технологии, до которой уже рукой подать.
Если мы сможем изменить человека для жизни на Марсе, мы, вероятно, сможем сделать это и для других миров. Вообразите далекое будущее, где человеческие колонии живут в различных мирах, приспособившись выживать там, комбинируя технологии и генетическое модифицирование.
Это будет и хорошо, и плохо. Хорошо то, человеческие колонии смогут выживать многие поколения. А плохо, что они не смогут жить где-нибудь еще в Солнечной системе, не проходя весь процесс адаптации заново.
А вы захотели бы навсегда изменить ваше тело, чтобы лучше приспособиться к жизни в другом мире? Напишите, что думаете по этому поводу, в комментариях.
Источник
В фильме «Марсианин» герою нужно было дождаться прилета на Красную планету следующей экспедиции при небольшом запасе воды, еды и воздуха. Американский кинематограф попытался придумать, как это сделать, а советские ученые решили подобную задачу еще до создания книги о выживании на Марсе Энди Вейером.
Полвека назад в красноярском Институте физики СО РАН была создана установка, которая помогла бы космонавту выжить на любой планете без особых проблем и помощи извне. Революционная, не имеющая аналогов в мире система замкнутого обеспечения «БИОС-3» практически полностью обеспечивала людей внутри нее и водой, и кислородом, и едой. Достаточно было взять с собой совсем небольшой запас, и дальше все производилось и очищалось самой системой.
Первые эксперименты по созданию замкнутых автономных систем жизнеобеспечения начались в Красноярске в конце 1960-х, — рассказывает ведущий научный сотрудник, ученый секретарь Института биофизики Сибирского отделения РАН, кандидат биологических наук Егор Задереев. — Ученые установили: чтобы два человека могли прожить год, им нужно около 300 кг кислорода, 2,5 тонны воды и 400 кг пищи. При этом за тот же период они выделят 350 кг углекислого газа и тонну отходов, которую необходимо переработать. Оставалось понять, как обеспечить их всем этим в изолированной от внешнего мира среде.
Специалисты провели эксперименты и подтвердили гипотезу, что потенциал развития живого организма выше, чем реализуемые возможности. Когда одноклеточную водоросль хлореллу поместили в идеальные условия, она стала расти значительно быстрее и производить больше кислорода, чем в естественной среде, а также активнее перерабатывать углекислый газ.
Водорослей в небольшом баке стало хватать для того, чтобы человек мог нормально дышать весь день, поместив лицо в специальное отверстие, не позволяющее поступать воздуху снаружи. Так в 1964 году создали систему с замкнутым циклом воспроизводства кислорода «БИОС-1», которая помогала человеку дышать в безвоздушном пространстве, например, в космосе. Затем ученые смогли увеличить время пребывания в замкнутом помещении с 12 часов до 30 суток. Позднее был замкнут и водообмен, что позволило провести 45-суточный опыт.
Однако водоросли пригодились лишь для того, чтобы обеспечивать человека кислородом и избавлять от углекислого газа. Если в замкнутом пространстве не будет других растений, то и питаться придется тоже водорослями. Может, питательных веществ человеческому организму и хватит, но сохранить психическое здоровье на такой диете будет проблематично.
В 1966 году ученые запустили эксперименты с овощами и злаками и в результате построили установку «БИОС-2». Оказалось, что если той же пшенице создать идеальные условия для роста — без перепадов температуры, смены погоды, сорняков, то она будет давать урожай шесть раз в год, причем в несколько раз больший, чем в естественных условиях. Попутно исследователи установили, какое количество пшеницы необходимо посеять, чтобы прокормить одного человека.
Когда об экспериментах, проводившихся в Институте физики СО РАН, стало известно основоположнику отечественной космонавтики Сергею Королеву, он заинтересовался ими и встретился с создателем и директором красноярского института академиком Леонидом Киренским. По личному распоряжению Королева, которому требовалась автономная система жизнеобеспечения для станции на Луне, были выделены средства на продолжение исследований. Они позволили в рекордно короткий срок, всего за семь лет создать искусственную экосистему «БИОС-3».
Красноярские биофизики получили огромные по тем временам деньги — 1 млн рублей. На эти средства к 1972 году они построили специальный изолированный от внешнего мира бункер со стенами из нержавеющей стали, общий объем которого составлял 315 куб. м, а площадь — 14х9х2,5 м.
Бункер был рассчитан на пребывание в нем трех человек и разделен на четыре части. В одной располагались жилые каюты с кроватями, кухня-столовая, санузел и рабочая зона — мастерская-лаборатория с оборудованием для переработки урожая, утилизации несъедобной биомассы, а также с системами доочистки воды и воздуха. Другие три части предназначались для растений.
В замкнутом пространстве и при искусственном освещении росли водоросли, а также селекционные сорта сои, салата, огурцов, редиса, моркови, свеклы, укропа, капусты, картофеля, лука. Они регенерировали воду и кислород, а также обеспечивали «бионавтов» всеми необходимыми для существования питательными веществами, витаминами и микроэлементами. Там же росла и специально выведенная красноярским селекционером Генрихом Лисовским карликовая пшеница с очень коротким стеблем: несъедобная часть колоса была минимального размера, и отходов было мало. Она давала урожай в 200–300 центнеров с гектара. А среднеазиатская трава чуфа обеспечивала людей растительным маслом.
Чтобы люди внутри «БИОСа» могли общаться с внешним миром, герметичный бункер обеспечили телевизором и телефоном. Была смонтирована система охлаждения и подачи энергии.
В начале 1970-х три добровольца из числа сотрудников впервые прожили в бункере полгода — 180 дней, с 24 декабря 1972 года по 22 июня 1973 года. Весь кислород, которым они дышали, обеспечивали выращиваемые ими растения. Они же перерабатывали углекислый газ. Первоначально имевшийся запас воды перерабатывался и очищался, чтобы использоваться многократно.
Участники эксперимента ели овощи, выращенные ими самими, собирали и мололи пшеницу и пекли из нее хлеб. Так они получали по 300 граммов хлеба и 400 граммов овощей в день. Животным белком «бионавтов» обеспечивали запасы консервов и сублимированного мяса. Постоянно проводившиеся медицинские наблюдения показали, что такой рацион, а также переработанные и очищенные вода и воздух не сказались отрицательно на здоровье добровольцев.
Эксперимент длился всего полгода. Стало ясно, что продолжать его нет смысла: созданная в «БИОСе» замкнутая система жизнеобеспечения работает безукоризненно. Искусственно созданный конвейер по производству воды, кислорода и пищи сбоев не дает. Разумеется, при условии поступления большого количества электроэнергии снаружи, но эта проблема в космосе или на любой из планет легко решается с помощью атомной электростанции или солнечных батарей.
На станции «БИОС-3», имитирующей внеземное поселение, состоялось 10 экспериментов по автономному выживанию. В них принимали участие экипажи составом от одного до трех человек. Дольше остальных «бионавтов» в «БИОС-3» прожил инженер Николай Бугреев — в общей сложности 13 месяцев.
В 1968 году красноярская разработка рассматривалась на XIX конгрессе Международной астронавтической федерации как один из возможных прототипов биологической системы обеспечения жизнедеятельности людей на новом этапе освоения космоса — во время длительных экспедиций. Это стало мировым признанием достижений сибирских биофизиков.
Ученым оставалось решить еще одну принципиальную задачу — как обеспечить людей в замкнутом пространстве не только растительной, но и белковой пищей. Один из создателей «БИОСа-3» академик Иосиф Гительзон выдвинул революционную по тем временам идею — использовать для этого генетически модифицированные растения, которые будут производить нужный животный белок. Не решенными также оставались проблемы естественной утилизации биомассы растений и возвращения во внутрисистемный массообмен выводимой из организма человека соли.
Ученые решили повторить успешный на Земле эксперимент в условиях космоса. Красноярский институт начал готовить первые емкости для выращивания растений в условиях невесомости, но тут грянула перестройка. Из-за полного отсутствия финансирования уникальные, не имевшие на тот момент аналогов в мире исследования пришлось прекратить, а «БИОС-3» — законсервировать.
источник
Когда НАСА анонсировала открытие жидкой воды на Марсе,
это был настоящая сенсация. С тех пор, впрочем, было сделано довольно много других впечатляющих открытий, в основном прошедших мимо широкой публики. Что удалось узнать о Марсе за последние годы?
На Марсе было больше воды, чем в Северном Ледовитом океане. Хотя точное расположение древнего океана Марса всё ещё остаётся загадкой, он там был почти наверняка и занимал около 19 процентов поверхности. Исследования атмосферы Марса и сравнение её с концентрацией воды на марсианском метеорите возрастом в 4,5 млрд. лет показали — за это время Марс потерял 87 процентов всей своей воды.
На Марсе есть импактит, в котором могла сохраниться жизнь. Импактит — горная порода, созданная в результате мощнейшего удара метеорита. На Земле самые крупные его залежи располагаются в Неваде и Тасмании. В прошлом году НАСА обнаружила новые месторождения на Марсе. Учитывая то, что в импактите из Аргентины сохранилась органика, возможно, в марсианских породах мы найдём нечто похожее.
Ирокез Марса. В 2013 году MAVEN, аппарат для изучения марсианской атмосферы, был только запущен. Позже на основе его показаний компьютерная симуляция выявила у красной планеты «ирокез» из заряженных частиц, «вырванных» солнечным ветром из атмосферы.
Подземные вулканы Подземные вулканы Марса. Тридимит указывает, что в прошлом Марс отличался серьёзной вулканической активностью. Исследования станции MRO также показывают, что под марсианским льдом некогда извергались вулканы. Конкретно — в регионе Sisyphi Montes, заполненном горами с плоскими вершинами, напоминающими подлёдные вулканы Земли. Там же были найдены следы минералов, выброшенных при извержении.
Огромные цунами на древнем Марсе. Новейшие исследования показывают, что на красной планете не просто был настоящий океан, но и возникали цунами чудовищной мощи. Если верить Алексу Родригезу, одному из учёных, предложивших данную теорию, волны могли подниматься на высоту до 120 метров! Правда лишь раз в три миллиона лет.
Марсианские дюны Морзе. Марсоходы и зонды уже довольно долго изучают пески Марса, но недавние фотографии вызвали у исследователей некоторое замешательство. В феврале 2016 станция сделала фото региона с дюнами, напоминающими точки и тире азбуки Морзе. Если «тире» несложно объяснить сильным ветром, происхождение «точек» до сих пор остаётся неизвестным.
Белая планета. Любопытно, что когда-то на Марсе белый цвет превалировал над красным. А именно — во времена жесточайшего ледникового периода, хуже любого, что пережила Земля. С помощью радара, способного «просвечивать» грунт, астрономы изучили марсианские полюса и выяснили, что ледниковый период там был около 370 тысяч лет назад. Ещё через 150 тысяч, кстати, ожидается новый.
Тайна мексиканских минералов. Один из регионов, исследованных Curiosity в 2015 году, где слой песчаника покоится на аргиллитовой основе, содержал невероятное количество кремнезема — оксида кремния, главного компонента горных пород. Чтобы получить такое количество кремнезема, потребовалась бы вода, очень много воды. А первая же взятая в зоне проба обнаружила тридимит — редчайший минерал даже на Земле.
источник
Изучение Вселенной — интереснейший процесс. Нам довелось жить в прекрасную эпоху, когда путешествия на Марс уже не кажутся недостижимой мечтой. Сведения о красной планете ученые черпают из отчетов марсохода NASA Curiosity. В нашей подборке — 12 интереснейших снимков из путешествия, которое стартовало 4 года назад!
Каньон Северный в северной полярной шапке Марса
Высадка марсохода на планету состоялась 6 августа 2014 года, его главная задача — обнаружить возможные следы жизни на планете, а также собрать данные для ученых, которые подтвердят или опровергнут возможность экспедиций на Марс с последующей высадкой. Как известно, ученые из лаборатории НАСА работают над программой безвозвратного полета на красную планету с 2010 года, так что, глядя на эти снимки, можно представить, что увидят первые добровольцы-колонизаторы, после удачного приземления.
3-километровый ударный кратер на Марсе
Марсианский оползень
Аллювиальные выносы на кратере Saheki
Ямы Нили являются одной из самых красочных областей Марса
Следы потепления в холодном регионе
Марсоход исследует планету
Тень от марсохода
Влияние ветровой эрозии на формировании ландшафта
Минерал ярозит в лабиринте Ночи, 24 ноября 2015 года
Путь, проделанный марсоходом с августа 2012 года по середину ноября 2015 года
Источник: