Архив за месяц: Март 2016

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ
Каждое письмо – это не только невероятный шквал эмоций, чувств и переживаний, но и чья-то прожитая жизнь, полная тайн, загадок и захватывающих сюжетов. А что, если такому посланию в конверте лет сто, и у него есть своя потрясающая история, которую нам и пытается рассказать талантливый художник Марк Пауэлл (Mark Powell), делая наброски простой шариковой ручкой..?

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

О чём молчат конверты. Автор Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Отголоски прошлого. Автор Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Бумажное послание. Автор Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Рисунки на конвертах. Автор Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Лица, нарисованные шариковой ручкой. Автор Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Портреты на конвертах. Автор Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Истории из жизни. Автор Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Душевные портреты. Автор Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Автор Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Рисунки Марка Поуэлла (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Портреты ручкой. Автор Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Лица на конвертах. Автор Марк Поуэлл (Mark Powell).

Марк настолько вдохновлён своими идеями, что рисует не только на старых конвертах, но и на книжных обложках, газетах, журналах, картах и даже на документах. Его рисунки так реалистичны и душевны, что смотреть на них без лёгкой тоски и задумчивости просто невозможно. Практически каждая из его работ полна тайн, и для зрителя так и остаётся загадкой, почему художник чаще всего изображает именно портреты людей? Одни предполагают, что такой подход к творчеству – своего рода месседж прошлому в облике конкретного человека. Другие же говорят о том, что автору просто нравится рисовать на потрёпанных временем вещах. Но как бы там ни было, а подобные шедевры способны удержать интригу и напряжение до самого конца. Ведь только одному Пауэллу известно, что таят в себе эти умудрённые жизнью лица…

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Тайны старых карт. Автор: Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Жизненные портреты. Автор: Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Портреты ручкой. Автор: Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Невероятные работы Марка Поуэлла (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Рисунки Марка Поуэлла (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Работы Марка Поуэлла (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Творчество Марка Поуэлла (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Автор: Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Портреты ручкой. Автор: Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Загадочные работы Марка Поуэлла (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Интригующее творчество Марка Поуэлла (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Художник Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Автор: Марк Поуэлл (Mark Powell).

Невероятные портреты шариковой ручкой, или о чём молчат старые конверты, карты и документ

Творчество Марка Поуэлла (Mark Powell).
Источник: 

Электрификация в дореволюционной России

Часто утверждается, что развитие восточного региона Европы отстаёт от развития Запада на 50-100 лет. Отчасти это верно, особенно в плане социального уклада. Однако в научно-техническом смысле на многих этапах истории Российская империя оказывалось наравне с ведущими на тот момент государствами. В частности, в тот момент, когда бал правила модернизация энергетики – всеобщая электрификация – именно на территории нынешнего СНГ внедрялись передовые технологии и осуществлялись самые дерзкие проекты.

Царская Россия славилась великими учёными и инженерами. Недаром до сих пор в справочной литературе рядом указываются фамилии Маркони и Попова, Яблочкова и Эдисона. Различными путями отечественные и зарубежные специалисты приходили к одинаково впечатляющим результатам. Помимо гениальных изобретателей до революции империя имела большое количество просто хороших специалистов, подготовленных в основном учебными заведениями Петербургской академии наук. Особенно много выдающихся инженеров выпустил Санкт-Петербургский Практический Технологический институт, Техническое училище Почтово-телеграфного ведомства (ныне Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И. Ульянова), Институт Корпуса инженеров путей сообщения (ныне Петербургский государственный университет путей сообщения). Многие в эти ВУЗы поступали уже после окончания физико-математических факультетов ведущих государственных университетов.

Проекты электрификации в Российской империи прежде всего были связаны с транспортной инфраструктурой и телеграфной связью, а уже затем с бытовыми потребностями населённых пунктов – освещением, отоплением, работой предприятий. Однако мало какие из грандиозных задумок по электрификации железных дорог, прокладке линий электрического трамвая и метро доходили до практической реализации. Проблемы были скорее политическими и идеологическими, чем инженерными; после Октябрьской революции многие из тех, кто стоял у истоков российской электрификации, избегали связываться с наиболее перспективными идеями. Например, Глеб Кржижановский, один из ведущих электротехников начала 20-го века, обжегшись на молоке, стал дуть на воду – вместо того, чтобы использовать её для постройки ГЭС.

Да будет свет

В 1872-м году в Москве был открыт кабельный завод, а в 1873-м Александр Лодыгин провёл опыты по освещению улиц Петербурга лампами накаливания. Организованное им «Товарищество электрического освещения Лодыгин и Ко», имевшее монополию на применение ламп накаливания, особого успеха не добилось – на тот момент улицы столицы освещались в основном газовыми фонарями, и отбить эту нишу у давно обосновавшихся в ней компаний с ходу не получилось. А затем Лодыгину по личным причинам стало не до прогресса. Тем более что первые лампы накаливания имели угольные стержни-нити, которые имели низкую светимость и очень быстро перегорали.

Поэтому начавшаяся электрификация уличного освещения взяла на вооружения свечи Яблочкова – угольные дуговые лампы, каждой из которых хватало примерно на два часа службы. В 1878-м эти лампы были установлены для освещения Михайловского манежа и Большого театра в Петербурге, а затем ими стали заменять газовые и масляные светильники на площадях и крупных улицах. Из-за малого срока службы свечи Яблочкова популярности не обрели – их нельзя было дозаправить, а приобретение новых обходилось в немалые деньги. Работа же над лампами накаливания российскими инженерами уже не велась – патент на изобретённую Лодыгиным вольфрамовую нить был перепродан General Electric. Российское «Общество электрического освещения» за несколько лет до Октябрьской революции приобрело права на производство новых ламп накаливания, но разруха после Первой мировой войны и нарастающая экономическая нестабильность не позволила массово перевести освещение на электричество.

Электрификация в дореволюционной России
свечи Яблочкова с угольными стержнями

Электрификация в дореволюционной России
одна из первых ламп накаливания Лодыгина

В основном свечи Яблочкова или лампы накаливания устанавливали в цехах, в преуспевающих магазинах, в театрах и местах собраний. Жилые дома, расположенные вблизи районных электростанций, и некоторые богатые поместья тоже обзаводились продвинутым освещением, но до 1917-го года даже в столицах электрические лампы были лишь в 30% жилищ.

Провода и роторы

Справедливости ради, проблема была не только в лампах, но и в электроснабжении. Производства устанавливали себе отдельные маломощные генераторы, города и деревни побогаче следовали тем же путём. Государственной программы финансирования электрификации не было, но иногда городские власти выделяли средств из резервных фондов. В 1912-м году сотрудники «Общества электрического освещения» взялись за создание крупных электростанций, которые могли бы снабжать энергией целые районы. Первой такой станцией стала «Электропередача» в Московской области, вокруг которой сейчас раскинулся городок Электрогорск. Эта станция до сих пор является местом проведения многочисленных экспериментов в области тепловой энергетики. На момент постройки она была самой крупной ТЭС, работавшей не на привозном топливе, а буквально «на подножном корме».

«Электропередача» обрела жизнь благодаря четырём людям: Кржижановскому, Радченко, Классону и Винтеру. Имя Классона станция носит сегодня; именно он подобрал место вблизи подходящего водоёма-охладителя и на богатейших залежах торфа, который изначально служил топливом для производства пара. Иван Радченко заведовал разработкой торфа. Александр Винтер, получивший образование в железнодорожном училище, через год после поступления в Киевский политехнический институт был выслан в Баку за студенческие беспорядки. В столице Азербайджана он по шестнадцать часов в сутки, по его же воспоминаниям, проводил в котельных. Работа в местном обществе «Электрическая сила» дала ему знания о функционировании паровых турбин, подобных тем, что позднее были установлены на «Электропередачу».

Однако построить станцию – это одно, а вот устроить подачу энергии от её генераторов к лампочкам и станкам – другое. 75 км от Москвы следовало каким-то образом преодолеть. На седьмом Всероссийском электротехническом съезде в 1913-м году инженеры договорились, что самый перспективный способ передачи энергии на большие расстояния – воздушные высоковольтные линии. Кабельный завод в Москве работал уже почти полвека, меди хватало, дерева для постройки опор – тоже. Имелись трансформаторы, как и теория, по которой можно было рассчитать оптимальный вольтаж для передачи и для потребления. Не было только одного – прецедента постройки семидесятикилометровой линии на землях Подмосковья. На землях, заболоченных и лесистых, и потому трудных для строительства, или же находящихся во владении частных лиц.

И как раз тут у энтузиастов-электротехников возникли проблемы. Дело в том, что не существовало практики взаимодействия поддерживаемого государством проекта с частными землевладельцами – дворянами и помещиками, далёкими от тяги к прогрессу. Законодательства, которое регулировало бы эти вопросы, не было тоже. А царскими указами в начале 20-го века поставить на место десяток зажиточных подданных уже не представлялось возможным. Поэтому руководители проекта, в основном Кржижановский и Винтер, лично договаривались с каждым из неуступчивых обладателей земель на пути от Электрогорска к Москве. Платили, заводили знакомства, увещевали и выпивали вместе с теми, кто упрямился.

Тем не менее, к 1914-му году была завершена постройка и «Электропередачи», и ЛЭП. Москва получила своё электричество. Новая станция заменила ряд мелких:
— Георгиевскую, построенную в 1902-м году; эта ТЭС работала на привозном топливе и давала свет зданиям в радиусе полутора вёрст;
— Городскую, за счёт которой освещался Каменный мост и площадь у храма Христа Спасителя;
— Дворцовую (построенную немецким промышленником Сименсом для освещения Кремля);
— привокзальные Ярославскую и Брестскую;
— и др.
Поскольку в 1914-м Российская империя вступила в Первую мировую войну, «Электропередача» так и осталась единственной станцией, способной снабжать энергией целую область.

Электрификация в дореволюционной России
Георгиевская электростанция

В это же время шло строительство меньших электростанций. Практика их создания была сформирована компанией Сименса в 80-х годах. В 1897-1898-м «Общество электрического освещения» в Петербурге строит электростанцию на Обводном канале, Кельнское общество «Гелиос» – ещё одну, на Новгородской улице, а Бельгийское анонимное общество электрического освещения – третью, на набережной Фонтанки. На десять лет этих станций хватает. Затем, после того, как правительственную комиссию не прошёл план постройки метро в Петербурге, принимается решение проложить линии электрического трамвая. В Киеве такой трамвай появился ещё в 1892-м году – для него построили полтора километра линий и 30-киловаттную электростанцию. Теперь же Генрих Графтио, впоследствии ведущий специалист по электрификации железных дорог, запускает в 1907-м году трамвай в Петербурге, и заодно строит «Трамвайную» электростанцию. В 1914-м началось строительство пятой станции, «Уткиной заводи». Но, как и в случае с предыдущими станциями, основную часть финансирования предоставили зарубежные инвесторы, в основном немецкие. С началом войны их попросили покинуть страну, да они и сами не горели желанием отдавать деньги вражескому государству. А «Русское акционерное общество электрических районных станций», которое формально руководило стройкой, само проект «не вытянуло».

Электрификация в дореволюционной России
киевский трамвай

За пределами столиц сооружение электростанций в основном находится в руках филиалов «Общества Электрического освещения» и электротехнических обществ – иностранные предприниматели редко заглядывали в провинции. В результате на просторах Российской империи нечасто появлялись мощные станции, зато часто – технически передовые. Например, первая электростанция, вырабатывавшая переменный трёхфазный ток, была сооружена в Новороссийске. Краснодарский край вообще отличался хорошими показателями электрификации, в основном за счёт удачного для прокладки ЛЭП равнинного рельефа северного берега Кубани.

Также в отдалённых регионах хорошо обстояло дело с гидроэлектростанциями. Первая из них появилась на реке Березовка у Зыряновского рудника на Алтае. Её мощность составляла 150 кВт и спроектирована она была горным инженером Кокшаровым. Большей известностью пользовалась построенная в Петербурге, на реке Большая Охта, 300-киловаттная станция. Над её строительством в числе прочих работал Роберт Классон. Следующая ГЭС, получившая имя «Белый уголь», расположилась опять в глубинке, хотя и у курортных Ессентуков и Кисловодска – на реке Подкумок. Эта станция питала 400 уличных дуговых фонарей, электродвигатели для насосов минеральных вод и несколько трамвайных линий.

Вообще проекты использование энергии рек появились даже раньше, чем Сименс организовал своё «Общество электрического освещения». Предложения по строительству ГЭС в 1880-м выдвигал российский инженер Чиколев, а в 1892-м с аналогичными идеями выступал Николай Бенардос. По его замыслу электроэнергией, полученной от турбин на Неве, должен был снабжаться Петербург. Графтио предполагал использовать течение реки Волхов (при советской власти его проект будет претворён в жизнь). Но поскольку наиболее организованно работал Кржижановский с коллегами, ГЭС по используемости отставали от ТЭС.

И всё же в 1913-м году на протяжённых речках насчитывались тысячи небольших электростанций. Ещё больше их стояло на горных речушках, вблизи рудничных предприятий. К 1917-му году суммарная мощность гидроэлектростанций России достигала 19 МВт. Самая крупная из них вырабатывала 1350 кВт электричества и находилась в Туркестане – эта Гиндукушская ГЭС работает до сих пор. Для сравнения, самая производительная электростанция империи – «Электропередача» – производила 9000 кВт энергии.

Электрификация в дореволюционной России
машинный зал Гиндукушской ГЭС

Причины, почему в центральных регионах акцент делался на тепловых станциях, а на периферии – на ГЭС, довольно очевидны. Во-первых, изначально считалось, что равнинные, хоть и полноводные реки использовать для производства электроэнергии невыгодно. Во-вторых, в Москву и Петербург регулярно поставляли большое количество топлива, добытого в других государствах (важным поставщиком была Англия). А отдалённые населённые пункты рассчитывать на стабильное снабжение не могли. В то же время, обильные торфяные залежи в Подмосковье способствовали появлению небольших электростанций, находящихся в частном владении.

Начало Первой мировой несколько изменило расстановку сил в российском энергетическом сегменте. Со времён Сименса подрядчиками и спонсорами развёртывания сети электростанций выступали в основном подданные Германии. В 1909-м году более 85% электротехнических предприятий и компаний принадлежали не Российской империи; из-за обострения отношений к 1914-му году эта доля упала до 70%, но этого было недостаточно – резкое сворачивание зарубежных инвестиций всё равно сильно ударило по энергетическому строительству.

Другой проблемой было отсутствие машиностроения достаточного уровня. Например, при строительстве Гиндукушской ГЭС использовались турбины австро-вергерского производства. Даже для крупнейших столичных электростанций турбины поставлялись из Европы и США. С началом войны поставки сократились. Правда, в результате этого кроме негативного влияния был и положительный момент – постепенно стало развиваться отечественное приборостроение. Сразу после начала войны открылся Московский Электроламповый завод; рассматривались проекты по сооружению турбинных заводов, но до революции их не успели осуществить.

Тормозные колодки

В 1900-1914-м годах темп электрификации был одним из наиболее высоких в мире. Однако это касалось промышленного оснащения электротехникой; бытовые приборы и освещение на электричестве были редкостью. Отчасти это было вызвано не слишком высоким средним уровнем дохода. Отчасти – проблемами с электростанциями:
— из-за отсутствия юридической базы, позволяющей урегулировать прокладку ЛЭП на частных владениях, строительство удалённых от населённых пунктов станций не представлялось выгодным;
— из-за личных пристрастий ведущих инженеров страны упор делался на строительство тепловых электростанций, в то время как ГЭС отводилась вспомогательная роль;
— подавляющее большинство станций производило постоянный ток – в стране не было заводов, которые бы собирали оборудование для работы с переменным током;
— выгоду в электрификации видели лишь немногие влиятельные жители России. В основном дворянство и мещанство не было заинтересовано в модернизации;
— не существовало централизованного плана электрификации, государственного финансового плана и управляющих органов. Работы велись частными компаниями – «Сименс и Гальске», «Обществом Электрического Освещения», городскими электротехническими обществами.
В 1914-м году к этим факторам добавилась Первая мировая война. На фронт ушли многие знающие специалисты. Темп строительства электростанций и прокладки линий передач упал вдвое, и до Октябрьской революции уже не восстановился.

Хроники электрификации: личности и организации

Отдельные случаи подведения электричества в частные дома и цехи в России известны с 70-х годов 19-го века. В 1878-м Александр Бородин, выпускник питерских институтов и ведущий инженер Киево-Брестской железной дороги оснастил токарный цех Киевских же железнодорожных мастерских четырьмя дуговыми фонарями, каждый из которых был запитан от своей электромагнитной машины Грамма. В 1879-м году электрическое освещение впервые было применено для подсветки моста – им стал разводной Литейный мост через Неву.

На тот момент монополия на освещение питерских улиц принадлежала компаниям-производителям масляных и газовых фонарей. Однако Литейный был построен после заключения монопольного договора и не попадал под его действие. Успешное завершение проекта по электрическому освещению моста стало одной из причин образования в 1880-м электротехнического отдела Русского технического общества. Под его покровительством была начата установка ламп Яблочкова на улицах Москвы и Петербурга, а также в некоторых промышленных помещениях. Интерес к проекту, опять-таки, сильнее всего проявляли транспортные компании – железнодорожные и пароходные.

В это время в стране обосновывается крупный немецкий инженер и промышленник Эрнст Вернер фон Сименс. Специалист по электрическому телеграфу, генераторам постоянного тока и меценатству, именно он вводит в обиход слово «электротехника» и даёт миру множество коммуникационных и транспортных технологий. Царская Россия становится одним из его испытательных плацдармов – в 1883-м году он работает над праздничной иллюминацией Кремля. Затем его компания «Сименс и Гальске», которая позднее станет концерном мирового уровня Siemens, обеспечивает освещение Невского проспекта и Зимнего дворца.

Электрификация в дореволюционной России
Боголюбов А.П., «Иллюминация Кремля», 1883г.

К 1887-му году Сименс принимает Российское подданство, становится дворянином и основывает «Общество Электрического Освещения». На протяжении следующих тридцати лет – до самой Октябрьской революции – работа этого общества отличалась наибольшей эффективностью среди всех организаций, занимавшихся электрификацией. Кстати, именно в этой, глубоко коммерческой организации начинал Глеб Кржижановский.

Фамилия этого электротехника в связи с революционной деятельностью упоминается даже чаще, чем в связи с энергетикой. Причины на то имеются – знаменитый ГОЭЛРО (Государственная комиссия по электрификации России) был основан именно Кржижановским, а многие его положения были больше идеологическими, чем практическими. Кроме того, Кржижановский был близким другом В.И. Ленина. Но ещё до всевозможных революций этот человек был обычным монтажником, инженером и управляющим Московской кабельной электросетью, создателем весьма интересных проектов электростанций.

Прямо на стыке двух столетий гидротехник Богоявленский предложил постройку ГЭС в районе Жигулёвской возвышенности, на родной для Кржижановского Волге. Кржижанвский, на тот момент уже хорошо зарекомендовавший себя инженер, отнёсся к плану благосклонно, но другие местные специалисты идею раскритиковали, посчитав, что она непрактична. А главное – воспротивились церковники. Епископ Симеон написал приволжскому землевладельцу графу Орлову-Давыдову депешу, в которой настойчиво просил оградить красоты Поволжья от посягательств богоотступников-электротехников. К нему присоединились чиновники и купцы, и дело отложили в дальний ящик. Кржижановский в дальнейшем стал ярым приверженцем торфяных теплоэлектростанций, строившихся быстро и не требовавших огромных площадей. А спустя полвека на Волге всё-таки построили ГЭС, и не одну, а целую их систему.

Электрификация в дореволюционной России
строительство Жигулёвской ГЭС

Однако и ТЭС оказались полезны. Ими в основном занималась группа техников, возглавленная тем же Кржижановским; в неё также входили А. Винтер, Р. Классон, И. Радченко. Друзья по «Обществу электрического освещения», они разработали ряд проектов электростанций на угле и торфе; их трудами за несколько лет была создана сеть районных ТЭС на паровых турбинах. Они же раз за разом переводили системы подачи электроэнергии на большие вольтажи. Эта работа продолжалась после Октябрьской революции; по сути, весь план ГОЭЛРО был лишь модификацией старых проектов.

У всего есть предыстория

Одним из величайших достижений советского ГОЭЛРО традиционно называется Днепрогэс – мощная и технологически продвинутая электростанция, построенная за счёт десятков жизней работников. Однако проект этой самой Днепрогэс был разработан гидротехником Генрихом Графтио за пару лет до Октябрьской революции. Причём с точки зрения сохранения судоходства на Днепре и естественного гидрологического режима, первоначальный план строительства был более щадящим.

По уровню производства электроэнергии в 1913-м году Россия находилась на четвёртом месте (2,5 млрд. кВт*ч) после США, Германии и Великобритании (26, 8, 3 млрд. кВт*ч соответственно). За период с 1888 по 1914-й год количество электростанций городского значения выросло с одной до ста тридцати, а их суммарная мощность – с 505 до 150000 кВт. С началом Первой мировой темпы электрификации упали, но один из ведущих российских учёных того времени – Владимир Вернадский – отличавшийся широтой интересов и впечатляющими способностями к аналитике, предсказывал, что к 1925-му году вся страна будет охвачена районными станциями типа «Электропередачи», и производство станет полностью электрифицированным.

Если вспомнить программу электрификации СССР, увидеть параллели с ранними наработками легче лёгкого. А главное – практически все запланированные стройки должны были использовать наработки учёных царской России, в массе своей, впрочем, перешедших в ГОЭЛРО.

Правда, был и другой аспект дореволюционной электрификации: возможно, по выработке энергии Россия и была на четвёртом месте, но вот потребление её на душу населения было одним из самых низких, по крайней мере, среди стран Европы и Америки. Электроснабжение предназначалось для общественных учреждений, улиц, площадей и заводов, но не для среднестатистического горожанина и тем более не для обычного крестьянина. Тем более что почти все станции работали на привозном либо низкокалорийном топливе, и производили постоянный ток, который в кабелях ЛЭП быстро затухал.

Источники

1. Олег Никитин. Плюс электрификация
2. Электрификация империи
3. Вольф Кицес. Проблемы электрификации царской России
4. Пресс-служба ОАО «СО ЕЭС». 85 лет вахты во всех режимах
5. Вадим Эрлихман. Электрификация всей страны, план ГОЭЛРО и эпоха освещения
6. Wikipedia. Electrification
7. Википедия. Вернер фон Сименс
8. Википедия. Генрих Осипович Графтио
9. Википедия. Глеб Максимилианович Кржижановский
10. Википедия. Роберт Эдуардович Классон
11. Википедия. Шатурская ГРЭС
12. Официальный сайт МОСЭНЕРГО. ГРЭС-3 им. Р.Э. Классона
13. Олег Пуля. Водяная мощь России

PS

Демифологизация плана ГОЭЛРО началась в конце 1980-х, когда отпала необходимость оправдания советского социалистического строя. В учебных курсах по истории экономики СССР ведущих советских вузов иначе стали трактоваться его цели и задачи.

Во-первых, вспомнили, что когда план только разрабатывался, было много предложений, как его назвать. Рассматривались варианты: ГРЭК, ЭЛЕРОС, КОПЭРО, КОМЭРО, КОМПЭЛЕРО, ГОСЕЭЛ, ГОРЭЛ и т.д. И только из уважения к пионеру российской гидроэнергетики Генриху Осиповичу Графтио был принят его вариант: «ГОЭЛРО».

Во-вторых, выяснилось, что строго говоря, ГОЭЛРО не был планом электрификации, а представлял собою перспективный план комплексного развития отраслей народного хозяйства и экономических районов, в связи с их электрификацией. План предполагал через десять лет после принятия (1920 г.) увеличить промышленное производство России на 80%, сравнительно с уровнем 1913 года. Увеличение производства текстильной промышленноґсти предполагалось на 47%, химической — на 150%, черной металлургии и машиностроения — на 100%. При этом производство электроэнергии в 1930 г. должно было составить не менее 8,8 млрд. кВт*час.

В-третьих, оказалось, что, помимо В.И.Ленина, Г.М. Кржижановского и Л.Б. Красина у плана ГОЭЛРО имелись «более близкие родственники», например, ректор МВТУ профессор В.И. Гриневицкий. В монографии, опубликованной в 1919 году в Харькове, он убедительно доказал, что основным направлением энергетики ближайшего будущего станет развитие районных станций, работающих на малоценном, зато дешевом топливе. Затем дороговизна топлива сделает рентабельной постройку гидроэлектростанций: на реках Свирь, Мета, Волхов, Днепровских порогах, реках Кавказа.

В постсоветское время были сделаны попытки объяснения социальных мотивов фетишизации «ленинских идей всеобщей электрификации». В.Л. Гвоздецкий (зав. отделом истории техники и технических наук Института истории естествознания и техники имени С.И. Вавилова РАН) считает, что истинной причиной пристального внимания большевистских лидеров к энергетическому строительству были их идеологически-мировоззренческие чаяния:

«Они надеялись с помощью электрификации перевести национальґный менталитет из креационистских, в первую очередь православных координат, в направление обожествления новой атеистической власти, принесшей народу и в прямом (через электрификацию), и в переносном смысле свет. Особое внимание уделялось при этом крестьянству, как основному и достаточно консервативному сословию, носителю частнособственнических инстинктов. Надеялись, что «лампочка Ильича» и электроплуг помогут оторвать крестьянство от земли и превратить его, согласно терминологии Л.Д. Троцкого, в «трудовую армию наемных сельских рабочих».

Профессора-преподаватели МГИМО А.И Грищенко и П.С. Зиноватный исследовали законодательные акты и иные правовые документы государственной власти в области электроэнергетики в период с 1885 г. до 1918 года. И пришли к выводу, что к началу Февральской революции «правительство Российской Империи подошло с определившимся направлением политики в отношении электрических предприятий», а именно:

1. Вводилась монополия государства на производство и передачу электрической энергии, для чего устанавливалась особая концессионная система возникновения электрических предприятий.

2. Создавались правовые условия для свободной деятельности электрических предприятий. В первую очередь, они получали право в определенном порядке принудительно отчуждать частновладельческие земли или участвовать в пользовании ими и право пересечения дорог для устройства электротехнических сооружений.

3. Поощрялось составление и воплощение плана строительства частным капиталом или непосредственно казной на концессионных началах сети крупных районных электрических станций в местах залегания минерального топлива или «белого угля» — силы падения воды.

М.Н. Барышников (Российский государственный педагогический университет) на примере «Общества электрического освещения 1886 года» и торгового дома (полного товарищества) «Сименс и Гальске» проанализировал эволюцию организационной структуры крупнейшего в дореволюционной России энергетического и электротехнического холдинга, находившегося под контролем семьи Сименс.

В работе приводятся данные о финансово-экономических показателях деятельности петербургского и московского отделений «Общества-1886 г.», сделанные на основании их балансов и отчетов за 1886-1916 гг.

Кандидат технических наук А.А. Беляков (МИСИ) исследовал вопрос о деятельности правительственных комиссий при Министерстве путей сообщения по изучению водных ресурсов Российской Империи, с «введением в работу ныне напрасно теряющейся энергии рек и сбережением тем запасов топлива». Оказывается, царское правительство вынашивало планы строительства крупных гидроузлов и гидроэлектростанций для развития судоходства и электрификации районов, богатых «белым углем», то есть гидроэлектроэнергией.

К сожалению, до сих пор не появилось ни одного исследования, посвященного истории становления российской электротехнической промышленности, за исключением группы предприятий «электрослаботочной промышленности» С.-Петербурга, исследованной доктором исторических наук Т.В. Алексеевым. По этой причине в научной литературе продолжают высказываться ничем не обоснованные суждения, об абсолютной зависимости дореволюционной электрификации от поставок импортного оборудования. Между тем, еще в начале 1920-х гг. специалисты Научно-технического отдела ВСНХ отмечали высокий, опережающий другие отрасли, рост производства изделий (фабрикатов) русской электротехнической промышленности в период экономического подъема 1908-1913 гг., что, по их мнению, свидетельствовало о превращении ее в базовую промышленную отрасль.

Источник

КАК СДЕЛАТЬ НИГЕРИЙСКИЙ ХОЛОДИЛЬНИК

Сказ о том, как сделать переносной холодильник, работающий без электричества. Вам понадобятся два цветочных горшка, крышка, белое полотенце, песок и вода…

Приклеиваем горшок поменьше внутрь большого. Высыпаем песок в пространство между горшками.

Заливаем песок холодной водой из шланга, лучше — ледяной. Вода из колодца идеально подойдет, но можно использовать и простую воду из-под крана (когда вода испаряется, она выводит высокую температуру, тем самым создавая холод внутри — прим.).

Уже через 15 минут результат заметен. 12 градусов! Можно с успехом охлаждать напитки.

Продолжая добавлять в песок холодную воду, можно поддерживать низкую температуру внутри холодильника очень долго. Со временем она будет опускаться и может достигнуть результата в 5 градусов.

КАК СДЕЛАТЬ НИГЕРИЙСКИЙ ХОЛОДИЛЬНИК

КАК СДЕЛАТЬ НИГЕРИЙСКИЙ ХОЛОДИЛЬНИК

КАК СДЕЛАТЬ НИГЕРИЙСКИЙ ХОЛОДИЛЬНИК

КАК СДЕЛАТЬ НИГЕРИЙСКИЙ ХОЛОДИЛЬНИК

КАК СДЕЛАТЬ НИГЕРИЙСКИЙ ХОЛОДИЛЬНИК

КАК СДЕЛАТЬ НИГЕРИЙСКИЙ ХОЛОДИЛЬНИК

источник

И тебя сосчитали! Сколько видов динозавров бродило по Земле?
Норвежские биологи при помощи статистической модели, названной ими TRiPS, подсчитали возможное число динозавров, обитавших на Земле в эпоху мезозоя.

Исследование ученых из норвежского Университета Осло опубликовано в журнале Philosophical Transactions of the Royal Society. Специалисты при подсчете видов динозавров использовали метод, названный ими TRiPS (True Richness estimated using a Poisson Sampling model). Этот метод, по словам ученых, отличается высокой степенью достоверности, кроме того, он учитывает небольшие изменения в исходных данных. Биологи подсчитали количество обнаруженных останков для всех видов динозавров, относящихся к каждой геологической стадии мезозоя. Полученные результаты они занесли в таблицу.

В итоге ученые пришли к выводу, что в эпоху мезозоя по Земле бродило в среднем 1 тыс. 936 видов динозавров. При этом минимально возможное число видов оказалось равным 1 тыс. 543, максимальное – 2 тыс. 468.

Динозавры – надотряд наземных позвоночных животных, доминировавших на Земле в мезозойскую эру: в течение более 160 млн лет, начиная с позднего триасового периода (около 225 млн лет назад) и до конца мелового периода (около 65 млн лет назад). Ученые до сих пор не могут назвать точное количество видов динозавров, их оценки сильно колеблются: от 250 до 500 тыс. видов. Новые открытия окаменелостей и повторное изучение ископаемых останков, классифицированных ранее, может увеличивать или уменьшать число известных видов. Ученые также не исключают, что найденные за всю историю фрагменты костей, относящихся к разным геологическим стадиям, могут принадлежать одним и тем же животным, но разного возраста.

Источник: 

Самодельная точилка для кухонного ножа
Если покупать готовую точилку жаль денег, а руки откуда надо растут, то можно вполне применить свои умения во благо.
От автора:
Делал два выходных. Может кому пригодится.
Как обычно, изделие произведено из подручных (подножных) материалов

Из попавшейся фанеры, при помощи лобзика, выпиливаем основу.

Самодельная точилка для кухонного ножа

Также выпиливаем держатель (должен быть камень потом) шкурки.

Самодельная точилка для кухонного ножа

Держатель шкурки (камня) должен крепится к толстой проволоке. Я взял нержавейку. Можно и спицу. Из колодки вытащил латунные вставки, они с винтиками, что очень удобно.

Самодельная точилка для кухонного ножа

Приклеиваем вместе, и шкурим.

Самодельная точилка для кухонного ножа

Вместе с планкой (это вместо камня) для шкурки.

Самодельная точилка для кухонного ножа

Далее прижимная планка для ножа.

Самодельная точилка для кухонного ножа

Сверлим, выпиливаем, доводим. Также просверливаем отверстия и в основе (хз как назвать)

Самодельная точилка для кухонного ножа

Основа

Самодельная точилка для кухонного ножа

Примеряем

Самодельная точилка для кухонного ножа

Присматриваемся

Самодельная точилка для кухонного ножа

Размечаем и сверлим. Расстояние наугад. Но, чтоб ровно.

Самодельная точилка для кухонного ножа

Обе стороны

Самодельная точилка для кухонного ножа

Ближе

Самодельная точилка для кухонного ножа

Примерка

Самодельная точилка для кухонного ножа

Временно прикрутил, чтоб проверить угол для ножа

Самодельная точилка для кухонного ножа

Далее, нужно сделать механизм 3Д, или система перекоса, хз короче.

Самодельная точилка для кухонного ножа

Этапы процесса

Самодельная точилка для кухонного ножа

Заднюю стенку тоже выпиливал и сверлил, не сфоткал, был увлечен.

Самодельная точилка для кухонного ножа

Вид спереди

Самодельная точилка для кухонного ножа

Забыл сфотать, спинку тоже сверлим и прикручиваем

Самодельная точилка для кухонного ножа

В принципе все готово. Шкурим, мелочь всякую доделываем. Все элементы вместе:

Самодельная точилка для кухонного ножа

Готовое изделие. Минимум затрат, времени, усилий.

Самодельная точилка для кухонного ножа

Пыль, конечно была, стружка тоже по поласу, но есть же пылесос.

источник

Утерянное ядерное оружие

Страх перед ядерным оружием, которое даже при ограниченном применении способно приводить к чудовищным жертвам и разрушениям, отчасти уравновешивается пониманием того, что ядерные арсеналы находятся под правительственным контролем и предназначены для применения лишь в гипотетическом крайнем случае.

Но кошмар может стать реальностью, если бомба окажется в руках тех, кто не несет ответственности перед миром.

Насколько эта угроза реальна? По сути, у ядерных террористов есть два основных способа получить в свое распоряжение ядерное оружие: завладеть зарядами из арсеналов ядерных государств и построить бомбу самостоятельно. Начнем по порядку — что там с сохранностью государственных арсеналов? В мире существует пять государств, обладающих ядерным оружием в рамках договора о нераспространении ядерного оружия (ДНЯО). Это Россия, США, Великобритания, Франция и Китай. Еще три страны ДНЯО не подписали — Индия, Пакистан и Израиль. Индия и Пакистан, два «заклятых» соседа, провели испытания зарядов и объявили себя ядерными государствами. Израиль никогда не признавал обладание ядерным оружием, но с очень большой долей вероятности им владеет. Возможно, Израиль осуществлял свою ядерную программу в сотрудничестве с Южно-Африканской Республикой, когда там правил режим апартеида. Есть сведения, что ЮАР провела ядерное испытание в Южной Атлантике, однако после прихода к власти черного большинства программа создания ОМП была свернута. Северная Корея, подписав договор по ДНЯО, впоследствии отозвала свою подпись под договором и объявила о создании ядерного оружия, проведя три испытания. Больше ни у одной страны мира ядерных зарядов нет.

Таким образом, ядерный клуб состоит в основном из достаточно респектабельных государств, правительства которых будут делать все возможное, чтобы их ядерные арсеналы не вышли из-под контроля. Сомнения вызывают разве что эксцентричные вожди КНДР, но и они в поощрении ядерного терроризма пока не замечены и, похоже, развивают свою ядерную программу как политический козырь в пику политическому давлению со стороны США. Тем не менее с начала ядерной эпохи контроль над некоторым количеством ядерных зарядов утрачен. Broken Arrow (англ. «сломанная стрела») — таково принятое в вооруженных силах США кодовое обозначение для инцидентов, связанных с ядерными боезарядами.
Монстр в болоте

Одно из тревожных происшествий случилось 5 декабря 1965 года с кораблем «Тикондерога». Не с современным напичканным хайтеком ракетным крейсером, а с авианосцем, построенным еще во время Второй мировой. Корабль возвращался из Вьетнама на американскую базу ВМС в японском городе Йокосука, когда штурмовик Douglas A-4 Skyhawk, поднятый на палубу из трюма, вдруг покатился и упал за борт. Глубина в этой точке Филиппинского моря составляла около 5 км, и достать самолет было невозможно. Погиб и летчик. Но самым неприятным сюрпризом оказалось то, что на борту штурмовика находилась авиабомба B43 с ядерным зарядом мощностью 1 Мт, которая так и осталась покоиться на глубине. История всплыла лишь в 1981 году, а до того держалась в секрете не только по причине скандальной утраты боеприпаса, но и потому, что свидетельствовала: во время войны во Вьетнаме американцы держали ядерное оружие наготове.

А за несколько лет до этого, 5 февраля 1958 года, стратегический бомбардировщик B-47 столкнулся с истребителем F-86. Это произошло над морем, вблизи берегов штата Джорджия, неподалеку от города Саванна. На борту бомбардировщика находилась ядерная бомба Mark 15, и, опасаясь, что при крушении самолета заряд может сдетонировать, летчик сбросил боеприпас в воду неглубокого залива Уоссо-Саунд. Все попытки найти бомбу так и не увенчались успехом.

В январе 1961 года на борту стратегического бомбардировщика B-52 произошел технический отказ — вышла из строя топливная система. Ожидая крушения, экипаж также принял решение избавиться от двух ядерных бомб. Дело происходило не где-нибудь, а прямо над территорией США, в районе города Голдсборо, штат Северная Каролина. Одна бомба благополучно парашютировалась и повисла на дереве. Правда, потом выяснилось, что из шести предохранителей, которые должны были предотвратить детонацию боеприпаса, сработал только один, и лишь чудом не произошла ядерная катастрофа. Зато вторая бомба рухнула в болото на глубину 50 м и там осталась.

Еще одна «сломанная стрела» вонзилась в ледяной остров Гренландия. В 1968 году B-52 упал на лед в районе гренландской авиабазы ВВС США «Туле». На борту было несколько термоядерных бомб, причем при ударе в нескольких из них сдетонировала обычная взрывчатка, что привело к разрушению боеприпасов и выбросу радиоактивных продуктов. Однако, как выяснилось позже, одна из бомб проломила лед и ушла на дно, где с тех пор и покоится. Официально американские военные признали утрату 11 авиабомб, однако по неофициальным данным их число может быть гораздо больше — некоторые называют цифру 50.
 

Как там торпеды?

Ядерные боеприпасы теряли не только американцы. 7−8 марта 1968 года подводная лодка К-129 (проект 629) потерпела крушение в Тихом океане, недалеко от Гавайского архипелага (США). Причиной катастрофы стал, вероятно, взрыв на борту — возможно, взорвался водород из-за плохой вентиляции аккумуляторных батарей (лодка была дизель-электрической). Американские эксперты выдвигали версию срабатывания двигателей баллистических ракет Р-21, установленных в ограждении выдвижных устройств. Ракеты имели ядерные боеголовки, также, возможно, ядерные боезаряды были и у торпед. С гибелью К-129 связана история в духе политического триллера, подробно описанная в книге «Игра в жмурки» американской журналистки Шерри Сонтаг. В 1974 году к месту крушения лодки отправилась экспедиция, организованная ЦРУ и корпорацией знаменитого магната Говарда Хьюза. Был подготовлен специальный корабль Glomar Explorer, замаскированный под исследовательское судно. На самом деле на борту находилось уникальное оборудование для подъема подводной лодки с пятикилометровой глубины. Известно, что лодку целиком поднять все-таки не удалось. В частности, на дне океана остались ядерные заряды.

Уже на излете холодной войны, 7 апреля 1989 года, в результате пожара в Норвежском море погибла АПЛ «Комсомолец» проекта 685. Катастрофа стоила жизни 42 подводникам. Вместе с кораблем в море оказались похороненными торпеды с ядерными боеголовками.

Итак, великие ядерные державы в результате ряда инцидентов оставили без присмотра несколько десятков ядерных боезарядов, и теоретически (что уже было описано, например, в романе Тома Клэнси «Все страхи мира») террористы могут попытаться достать утраченные боеприпасы. Однако в реальности это представляется маловероятным. Уж если военные, которые располагали всей доступной техникой, так и не смогли отыскать и забрать бомбы с морского дна или из болота, то маловероятно, что какие-то злоумышленники смогут переплюнуть людей в погонах в оснащении или умении. Кроме того, все места, где произошли инциденты с утратой ядерных боеприпасов, известны, находятся под наблюдением, и если там будет обнаружена какая-то подозрительная активность, то она будет оперативно пресечена.
Ранец против танков

В западной прессе с некоторых пор появился термин loose nukes, под которым понимаются вышедшие из-под контроля государств ядерные боеприпасы, причем имеются в виду не заряды, утраченные в ходе инцидентов с военной техникой. После распада СССР было немало спекуляций на тему возможной утраты контроля над советским ядерным арсеналом со стороны руководства новых независимых государств, прежде всего России. Эти разговоры получили новый импульс после заявления бывшего секретаря Совета безопасности РФ генерала Александра Лебедя. В 1997 году он сказал, что во время пребывания в должности им якобы была создана комиссия по поиску портативных ядерных боеприпасов, имевших вид чемоданчика. По словам Лебедя, часть этих устройств (в разных интервью генерал называл разные цифры) была утрачена и даже, возможно, попала в руки чеченских сепаратистов.

На официальном уровне Россия никогда не признавала утрату подобных ядерных средств, хотя это не значит, что переносных зарядов не существовало. Действительно, сообщалось, что начиная с 1960-х годов в СССР создавались носимые ядерные мины, правда, они имели вид ранцев, а не чемоданов. По следам скандальных заявлений Александра Лебедя и бурной реакции мировой прессы в 1998 году по инициативе секретаря Совета безопасности Андрея Кокошина была проведена проверка, в результате которой выяснилось, что ранцевые боеприпасы надежно хранились в одном из арсеналов и в войска не выдавались. К настоящему времени, вероятнее всего, все они уничтожены в рамках инициатив по сокращению тактических ядерных вооружений. Малогабаритные боеприпасы также создавались в США и предположительно в Израиле и Китае.

В Соединенных Штатах боеприпасы такого класса имели название SADM (аббревиатура, расшифровывающаяся как «специальный разрушающий атомный боеприпас») и представляли собой ранцы, имевшие минимальный вес 50−70 кг и мощность, эквивалентную 1кт. Они предназначались диверсионным подразделениям, которые могли высаживаться на территории противника в районе побережья, закладывать заряды под стратегические объекты, включать таймер и затем эвакуироваться, например с помощью подводной лодки. Также предполагалось вооружать ранцами инженерные подразделения для постановки заслонов, например в районе Фульдского коридора — двух низин среди гор, по которым ожидался рывок танков Варшавского договора с территории ГДР в направлении Франкфурта-на-Майне. Эти боеприпасы также уничтожены американской стороной в рамках процесса разоружения. В общем, если обвинения России в слабом контроле за ядерными боеприпасами так и не получили весомых подтверждений, факт существования ядерных мин диверсионного класса не подлежит сомнению.

Еще одна ядерная держава, сохранность ядерного арсенала которой вызывает определенное беспокойство, это Пакистан. 6 сентября прошлого года на военно-морской базе в Карачи произошел инцидент со стрельбой. Группа фундаменталистов на лодках попыталась захватить фрегат ВМС Пакистана. Морякам удалось отбить нападение, но в ходе расследования инцидента выяснилось, что в диверсионной вылазке на стороне боевиков участвовали младшие офицеры пакистанской армии. Кроме того, в заговоре могли быть замешаны и более высокопоставленные военные. Состояние вооруженных сил страны, где среди военнослужащих немало людей, симпатизирующих исламистам, вселяет беспокойство за судьбу ядерного арсенала Пакистана, недавно присоединившегося к атомному клубу. Особенно с учетом наличия в стране территорий, где процветает черный рынок оружия: они находятся в международно признанных границах Пакистана, но не контролируются армией и полицией.
Проще, чем мы думали

Однако, если страшный сон о завладении террористами боеприпасов из арсеналов ядерных государств, к счастью, пока не стал явью, то остается другая возможность. По силам ли злоумышленниками изготовить атомную бомбу, так сказать, в домашних условиях?

В разнообразных публикациях на эту тему, например в докладе, подготовленном Институтом контроля за ядерными материалами (Вашингтон, США), был сделан вывод о том, что хоть дело это крайне непростое, бомбу террористы сделать могут. Речь, правда, идет именно о взрывном устройстве, а не о сырье. В качестве сырья в производстве атомного оружия применяется высокообогащенный (то есть содержащий более 90% изотопа U235) уран и оружейный плутоний (Pu239), хотя можно изготовить бомбу (малоэффективную) и из реакторного плутония, загрязненного изотопами Pu240 и Pu242. Обогащение урана — долгий и сложный процесс, детали этой технологии держатся государствами в строгом секрете, плутоний в природе вообще практически не встречается — его получают путем облучения нейтронами урана или нептуния. Также в результате облучения урана-238 плутоний постепенно накапливается в топливных стержнях реакторов АЭС, но отделить его от урана и прочих примесей — весьма трудоемкая задача. Для изготовления бомбы террористы должны будут похитить готовые ядерные материалы или купить уже похищенные на черном рынке.

Для того чтобы произошел ядерный взрыв, необходимо перевести массив ядерного материала в сверхкритическое состояние, после чего начинается неконтролируемая реакция деления ядер с излучением нейтронов и выделением энергии. Достичь сверхкритического состояния можно, во-первых, быстро соединив два подкритических фрагмента ядерных материалов в один или, во-вторых, резко увеличив плотность подкритической сборки. Бомба Little Boy («Малыш»), что упала на Хиросиму, была построена по первому принципу («пушечная схема»). Внутри нее один фрагмент высокообогащенного урана выстреливался в другой фрагмент, и возникало сверхкритическое состояние. По второму принципу сконструировали бомбу, разрушившую Нагасаки (Fat Boy, «Толстяк»). Там плутониевая сфера равномерно обжималась взрывом (имплозивная схема), за счет чего и создавалась сверхкритичность.

Мы не зря вспомнили бомбы зари атомной эры: большинство экспертов сходятся в том, что если террористы и смогут построить бомбу, то она как раз конструктивно будет напоминать ранние, простые, несовершенные образцы. Наиболее простая схема — пушечная, типа «Малыша», но для ее реализации необходим исключительно высокообогащенный уран в металлической форме. Достать его можно, похитив, например, топливные элементы научно-исследовательских реакторов. Более вероятно, что в руки террористов попадут широко используемые в атомной промышленности порошки оксидов урана или плутония. Ни порошки (из-за низкой плотности), ни даже металлический плутоний (из-за сильного нейтронного фона) для пушечной схемы не годятся. Это только по меркам нашего восприятия выстрел в пушке происходит мгновенно. В реальности же, пока две подкритические массы соединятся в сверхкритическую, нейтроны преждевременно запустят цепную реакцию, что заметно снизит мощность взрыва. Из порошков оксидов можно восстановить металлы, но это будет еще одно непростое звено в технологической цепочке. Есть вариант использовать порошки сами по себе, увеличив их плотность, но для этого понадобится специфический пресс, приобрести который, не привлекая к себе ненужного внимания, затруднительно.
 

В багажник не положишь

В чем минус архаичных конструкций? Современное ядерное оружие стало более компактным и выдает б? льшую мощность при меньшем расходе расщепляющихся материалов. По оценкам американских экспертов из Института контроля над ядерными материалами, для создания ядерного заряда террористам понадобится минимум 5−6 кг оружейного плутония (если реакторного, то больше) или 25 кг высокообогащенного урана при использовании правильных конструкций и нейтронного отражателя. Если конструкция будет более простой, то материалов понадобится больше. Но ядерные материалы — это еще не все оружие. Конструкция, призванная быстро создать критическое состояние, сложна и громоздка, так что террористическая бомба будет большой, тяжелой (около тонны) и в багажник автомобиля не поместится. Попытка уменьшить вес, например за счет взрывчатки в имплозивной конструкции, приведет к снижению эффективности устройства. Наиболее вероятная мощность террористической бомбы будет находиться в пределах 10 кт, что меньше, чем у бомбы, разрушившей Хиросиму. Впрочем, и в этом случае последствия теракта будут ужасны.

К угрозе ядерного терроризма в мире относятся серьезно. В прошлом году президент США Обама даже заявил, что опасается, как бы однажды ядерный заряд не взорвался на Манхэттене. Наибольшую обеспокоенность, конечно, вызывает сохранность не готового оружия, а ядерных материалов, которые находятся в нескольких сотнях помещений в сорока странах мира. Предотвращение попадания урана и плутония на черный рынок — главная гарантия того, что на Манхэттене, да и в других населенных местах мира все будет спокойно.
Инциденты с ядерным оружием

1. 2000 год

Российская АПЛ «Курск» затонула в Баренцевом море. Вооружение: ПКР П-700 «Гранит», возможно ядерное оснащение.

2. 1956 год

Бомбардировщик B-47 над Средиземным морем с двумя ядерными бомбами на борту.

3. 1950 год

Бомбардировщик B-36 выбросил ядерную бомбу над Тихим океаном.

4. 1957 год

Американский транспортник C-124 выбросил в воду две атомные бомбы (без заряда) после технического отказа на борту.

5. 1958 год

Бомбардировщик B-47 после столкновения с истребителем сбросил бомбу в мелкий залив неподалеку от города Саванна (штат Джорджия).

6. 1959 год

P-5M, американский противолодочный гидро­самолет потерпел крушение в водах системы заливов Пьюджет-Саунд. На борту была глубинная ядерная бомба (без заряда).

7. 1965 год

Штурмовик A-4E Skyhawk, вооруженный ядерной бомбой, скатился с палубы авианосца «Тикондерога» (CVA-14) и утонул.

8. 1968 год

АПЛ Scorpion (США) утонула в Атлантическом океане, неся на борту ядерное оружие.

9. 1962 год

Баллистическая ракета средней дальности «Тор» взорвалась, а боеголовка для высотного ядерного взрыва упала в океан около атолла Джонстона.

10. 1962 год

Еще одна ракета «Тор» потеряла в океане бое­головку.

11. 1968 год

Одна из ядерных бомб потерпевшего крушение в Гренландии бомбардировщика B-52 ушла под лед и утонула.

12. 1968 год

Советская дизель-электрическая подлодка К-129 затонула в районе Гавайского архипелага с ядерными баллистическими ракетами на борту.

13. 1970 год

Советская АПЛ К-8 затонула в Бискайском заливе. Наличие и номенклатура ядерного оружия на борту официально не подтверждены.

14. 1986 год

АПЛ К-219 затонула вместе с 16 баллистическими ракетами в районе Бермудских островов.

15. 1985 год

АПЛ K-278 «Комсомолец» затонула в Баренцевом море. На борту находились торпеды с ядерными боеголовками.
 

Таинственная гибель

Утерянное ядерное оружие

Соетская дизель-электрическая подводная лодка К-129 погибла по не выясненным до конца причинам в Тихом океане, неподалеку от Гавайского архипелага. Существует множество версий катастрофы — от срабатывания ракетных двигателей до столкновения с американской подводной лодкой.
 

Портативная бомба

Утерянное ядерное оружие

На фото ранец от SADM — ядерного устройства сверхмалого класса, предназначенного для инженерных и диверсионных задач. Эти носимые боеприпасы можно было использовать для уничтожения диверсионными группами стратегических объектов в тылу противника, а также для создания зон разрушений, пожаров, затоплений, радиационного заражения на пути наступающих войск, для уничтожения техники и живой силы. Подрыв SADM, как и мин неядерного класса, мог осуществляться по радиоканалу, по проводам или с помощью автоматического взрывателя.

Секретный исследователь
Утерянное ядерное оружие

Корабль Glomar Explorer, построенный корпорацией эксцентричного магната Говарда Хьюза по заказу ЦРУ, был замаскирован под научное судно. На самом деле в его днище был сделан специальный вырез для подъема на борт погибшей советской подлодки К-129 с ядерным оружием на борту.
 

Опасные потери

Утерянное ядерное оружие

Американский бомбардировщик B-52 не раз фигурировал в инцидентах с ядерным оружием. Громкая история случилась в январе 1966 года, когда этот гигантский самолет столкнулся в воздухе с заправщиком KC-135 неподалеку от испанской рыбацкой деревни Паломарес. Из четырех водородных бомб на борту три упали на землю и заразили местность радиацией, а одна рухнула в море и была найдена лишь два с половиной месяца спустя.

Утерянное ядерное оружие

Этот памятный знак установлен в городе Эурека, штат Северная Каролина — неподалеку от того места, где со своим страшным грузом расстался терпящий крушение B-52. Одна из выброшенных бомб ушла в болото на 50-метровую глубину, где до сих пор и лежит.

источник

Как различать корейцев, японцев и китайцев
Различать китайцев, японцев и корейцев друг от друга — особое искусство. Даже одному азиату не так-то просто определить национальную принадлежность другого. Мы расскажем, как это можно сделать.

Разница фенотипов

Скажем сразу: без практики различать корейцев, китайцев и японцев непросто. Даже они сами не всегда могут это сделать со 100% точностью.

Как различать корейцев, японцев и китайцев

Китайская нация — полиэтническая, там проживает 56 различных народностей и некоторые из них совсем не похожи на китайцев в нашем представлении. Например, уйгуры больше похожи на таджиков. Поэтому вывести какой-то усредненный тип китайского фенотипа просто невозможно.

Как различать корейцев, японцев и китайцев

Японец

Также проблему различения осложняет и то, что те же японские острова переживали не одну волну миграции как китайцев, так и корейцев, поэтому в ходе истории фенотипы опять же претерпевали изменения.

Однако некоторые признаки все же можно выделить.

Так, например, считается, что лица японцев вытянутые и овальные, нос более выражен, глаза большие с широким разрезом. Также считается, что у японцев более крупные головы.

Как различать корейцев, японцев и китайцев

Корейцы

Японские женщины часто используют бледно-белый цвет для лица в макияже и пользуются активными отбеливающими средствами. Считается, что японцы и японки самые белокожие среди азиатов. Китаянки по сравнению с японками меньше пользуются косметикой.

Среди этих трех народов самая темная кожа у китайцев, поэтому они не любят загорать, чтобы кожа была светлее.

Лица китайцев круглее, чем японские и корейские, при этом у китайцев обычно самые широкие скулы.

Корейские лица имеют тенденцию быть плоскими, с высокими квадратными скулами. Ещё у корейцев обычно более тонкие носы. Существует и образный способ дифференциации китайцев и японцев.Так, про китайцев говорят, что они похожи на котят, в то время как японцы — на рыбок, то есть у них глаза немного навыкате.

Как различать корейцев, японцев и китайцев

Японец
А ещё считается, что корейцев можно отличить по маленьким ладоням.

Язык

Ещё один способ различить эти три народа — по языку. У китайцев, вне зависимости от диалекта, язык тоновый, а корейцы любят в конце фраз ставить характерные звуковые маркеры вежливости, которые при должном опыте можно различать. Однако и тут можно ошибиться: считается, что шанхайский диалект китайского напоминает японский язык. Язык японцев без ударений и повышений тонов, монотонно-вежливый, говорят они приглушенно.

Как различать корейцев, японцев и китайцев

Китаец
Поведение

Китайцев, японцев и корейцев можно различить и по поведению. Самые импульсивные и громкие среди этих азиатских народов — китайцы. Они обычно непривычно для нашего уха разговаривают, могут плевать на землю, не смущаясь тем, что находятся в общественном месте. Японцы напротив — крайне сдержанны и деликатны, поэтому в Японии даже в общественных местах всегда очень тихо.

Стиль одежды

Кардинальные различия между китайцами, корейцами и японцами можно проследить «по одежке». Японцы чаще всего носят одежду мировых брендов и отличаются хорошим вкусом. Китайцы не всегда попадают в тон и красивое сочетание элементов одежды, у них свой собственный, отличный от японского, стиль.

Например, китаянку можно запросто встретить вечером на улице в пижаме, японки так не делают никогда. Китайцы-мужчины позволяют себе ходить в дешевой спортивной одежде.

Как различать корейцев, японцев и китайцев

Кореец
Японцы, если и используют спортивный стиль, то носят только известные во всем мире дорогие вещи.

Корейцы по стилю одежды находятся где-то посередине: опередили китайцев, но еще не догнали японцев.

Пластика

Наконец, одной из отличительных черт корейских женщин и мужчин часто являются «сделанные», кукольные лица. Пластическая хирургия в Корее — один из главных трендов.

Как различать корейцев, японцев и китайцев

Китаец

По статистике, Южная Корея занимает первое место в мире по проведению пластических операций как среди женского, так и мужского населения. Так что если перед вами лицо эталонной азиатской красоты, немного неестественно преувеличенной, то скорее всего это кореянка или кореец. 

источник