Альберт Эйнштейн

Пульсар J1906

Ученые-астрономы, наблюдающие за удаленной звездной системой, зафиксировали факт исчезновения из их поля зрения звезды, которая, согласно их предположениям, попала в область деформации пространственно-временного континуума, которую она сама же и создала, двигаясь по круговой орбите. «Исчезнувшая» звезда является частью бинарной системы J1906 и она является пульсаром. Это, в свою очередь, означает, что звезда является вращающейся нейтронной звездой, остатком от сверхмассивной звезды, разрушившей себя своей собственной гравитацией. Ученые изучали этот молодой пульсар в течение почти пяти лет, пытаясь выяснить все тонкости его взаимодействия со второй звездой системы, а не так давно сигнал от пульсара внезапно исчез, заставив ученых испытать ощущения, очень и очень близкие к шоковым.

Поскольку пульсар вращается, постоянно излучая луч мощного электромагнитного излучения, его сигнал очень похож на прерывистый сигнал от обычного радиомаяка. При помощи высокочувствительных приемников современных радиотелескопов ученые фиксируют такие сигналы пульсаров, характеристики которых обладают крайне и крайне высокой стабильностью. Но, исключением из этого правила стал сигнал от пульсара J1906, который начал уменьшаться в амплитуде, пока полностью не пропал из поля зрения радиотелескопа. И единственной причиной такой аномалии ученые считают падение пульсара под влиянием гравитации соседней звезды в складку деформации пространственно-временного континуума, туда, откуда радиосигналы не могут распространяться в сторону Земли.

Следует отметить, что подобный феномен имеет объяснение с точки зрения Теории относительности Эйнштейна, в которой определено то, что массивные космические объекты, и даже Земля, деформируют окружающее их пространство. А объекты столь высокой массы и плотности, как нейтронные звезды, способны вызвать достаточно сильную деформацию, в которую могут «провалиться» другие космические объекты или даже они сами.

Согласно расчетам, проведенным группой ученых из Института радиоастрономии, Нидерланды, возглавляемой Йоери ван Леевуеном (Joeri van Leewuen), пульсар J1906 исчез из поля зрения не навсегда. Ученые оценивают, что он вернется в область нормального пространства и начнет снова «сигналить» в сторону Земли меньше, чем через 160 лет.

Источник

Физики ставят под сомнение верность значения скорости света
В 1905 году Альберт Эйнштейн вычислил, что скорость света в вакууме является константой и составляет 299792 километра в секунду. Более столетия это значение принималось в качестве неоспоримого факта, но результаты некоторых последних исследований содержат намеки на то, что Эйнштейн мог ошибаться, а свет фактически распространяется в вакууме медленнее, чем было принято считать ранее.

Исследование, которое привело к получению столь неожиданных результатов, было проведено доктором Джеймсом Фрэнсоном (James Franson), ученым-физиком из университета Мэриленда, Балтимор. Он обнаружил, что фотоны света, рожденные во время взрыва сверхновой звезды SN 1987A, прибыли на Землю на 4.7 часа позже, чем ожидалось с учетом общепринятого значения скорости света в вакууме.

Взрыв сверхновой, который был замечен с Земли в 1987 году, кроме вспышки света, породил еще вспышку нейтрино — электрически нейтральных субатомных частиц, крайне слабо взаимодействующих с материей. Согласно теории Эйнштейна, вспышка нейтрино происходит во время взрыва сверхновой приблизительно на три часа ранее, нежели вспышка света. И эти два импульса, частиц нейтрино и света, должны были достичь Земли, сохранив изначальную разницу во времени, ведь и фотоны и нейтрино движутся в пространстве со скоростью света.

Однако, импульс света был зарегистрирован спустя 7.7 часа после импульса нейтрино, т.е. на 4.7 часа позже, чем определено теорией Эйнштейна. Джеймс Фрэнсон полагает, что зарегистрированная задержка представляет собой последствие замедления скорости света из-за явления, называемого «поляризацией вакуума». Упомянутое явление заключается в том, что при совпадении некоторых условий фотоны света превращаются в пару позитрон-электрон, которая существует в течение малых долей секунды, после чего снова превращается в фотон света.

Когда фотон света «раскалывается» на пару электрон-позитрон, то между этими частицами возникают силы гравитационного притяжения, оказывающие влияние на скорость их движения. Каждое из таких событий оказывает очень маленькое изменение скорости распространения света в целом, которое абсолютно незаметно на коротких дистанциях. Но на расстоянии в 168 тысяч световых лет это влияние привело к возникновения почти пятичасовой задержки.

Результаты работы доктора Фрэнсона вскоре могут быть опубликованы в журнале New Journal of Physics, а сейчас они проходят тщательную проверку независимыми экспертами. Ведь если доктор Фрэнсон окажется прав, то ученым потребуется пересмотреть некоторые существующие теории и произвести перерасчеты расстояний от Земли до Солнца и до других космических объектов, находящихся в самых далеких уголках Вселенной.

Источник

«Эй, Профессор, улыбончик для фото на день рождения, а?»Вот так выглядит полная версия самой узнаваемой фотографии Альберта Эйнштейна.
Сама она стала символом гения, который умеет радоваться жизни, а история её появления — символом репортёрской удачливости.


Фото было сделано в 1951 году, после празднования в Принстонском университете 72–хлетия учёного. На снимке он уже сидит в машине, рядом — доктор Эйделот с супругой. В тот вечер Эйнштейна осаждали репортёры, но один из них, Артур Сасс, сначала подождал, пока схлынет толпа, и только потом подошёл к машине со словами «Эй, Профессор, улыбончик для фото на день рождения, а?». Эйнштейн, который к тому моменту порядком устал от этих, с фотоаппаратами, просто быстро показал язык и отвернулся, думая, что щёлкнуть его не успеют, но Сасс успел! Когда в редакции увидели, что получилось, там состоялось нешуточное обсуждение с «большими шишками», стоит ли это публиковать, но, к счастью, всё закончилось благополучно.

Фотография понравилась и самому Эйнштейну. Он обрезал её до привычной теперь «головы профессора» и потом посылал в качестве открытки своим друзьям. Одному из них он написал: «Вам понравится этот жест, потому что он адресован всему человечеству».

источник

«Эй, Профессор, улыбончик для фото на день рождения, а?»Вот так выглядит полная версия самой узнаваемой фотографии Альберта Эйнштейна.
Сама она стала символом гения, который умеет радоваться жизни, а история её появления — символом репортёрской удачливости.


Фото было сделано в 1951 году, после празднования в Принстонском университете 72–хлетия учёного. На снимке он уже сидит в машине, рядом — доктор Эйделот с супругой. В тот вечер Эйнштейна осаждали репортёры, но один из них, Артур Сасс, сначала подождал, пока схлынет толпа, и только потом подошёл к машине со словами «Эй, Профессор, улыбончик для фото на день рождения, а?». Эйнштейн, который к тому моменту порядком устал от этих, с фотоаппаратами, просто быстро показал язык и отвернулся, думая, что щёлкнуть его не успеют, но Сасс успел! Когда в редакции увидели, что получилось, там состоялось нешуточное обсуждение с «большими шишками», стоит ли это публиковать, но, к счастью, всё закончилось благополучно.

Фотография понравилась и самому Эйнштейну. Он обрезал её до привычной теперь «головы профессора» и потом посылал в качестве открытки своим друзьям. Одному из них он написал: «Вам понравится этот жест, потому что он адресован всему человечеству».

источник

Альберт Эйнштейн - биография

Альберт Эйнштейн — (1879-1955), физик-теоретик, создатель теории относительности, автор основополагающих трудов по квантовой теории и статистической физике, один из основателей современной физики, иностранный член-корреспондент РАН (1922) и иностранный почетный член АН СССР (1926).

Родился в Германии, с 1893 жил в Швейцарии, с 1914 в Германии, в 1933 эмигрировал в США. Создал частную (1905) и общую (1907-16) теории относительности. Автор основополагающих трудов по квантовой теории света: ввел понятие фотона (1905), установил законы фотоэффекта, основной закон фотохимии (закон Эйнштейна), предсказал (1917) индуцированное излучение. Альберт Эйнштейн развил статистическую теорию броуновского движения, заложив основы теории флуктуаций, создал квантовую статистику Бозе — Эйнштейна. С 1933 работал над проблемами космологии и единой теории поля. В 30-е годы он выступал против фашизма, войны, в 40-е — против применения ядерного оружия. В 1940 подписал письмо президенту США, об опасности создания ядерного оружия в Германии, которое стимулировало американские ядерные исследования. Один из инициаторов создания государства Израиль. Нобелевская премия (1921, за труды по теоретической физике, особенно за открытие законов фотоэффекта).

Детство и начальное образование Эйнштейна
Альберт Эйнштейн родился 14 марта 1879 в старинном немецком городе Ульме, в Германии но через год семья переселилась в Мюнхен, где отец Альберта, Герман Эйнштейн, и дядя Якоб организовали небольшую компанию «Электротехническая фабрика Я. Эйнштейна и К°». Вначале дела компании, занимавшейся усовершенствованием приборов дугового освещения, электроизмерительной аппаратурой и генераторами постоянного тока, шли довольно успешно. Но в 90-х годах 19 века, в связи с расширением строительства крупных электроцентралей и линий дальних электропередач, возник целый ряд мощных электротехнических фирм. Надеясь спасти компанию, братья Эйнштейны в 1894 перебрались в Милан, однако через два года, не выдержав конкуренции, компания прекратила свое существование.

Дядя Якоб уделял много времени маленькому племяннику. «Я помню, например, что теорема Пифагора была мне показана моим дядей еще до того, как в мои руки попала священная книжечка по геометрии», — так Эйнштейн в воспоминаниях, относящихся к 1945, говорил об учебнике евклидовой геометрии. Часто дядя задавал мальчику математические задачи, и тот «испытывал подлинное счастье, когда справлялся с ними».

Родители отдали Альберта сначала в католическую начальную школу, а затем в мюнхенскую классическую гимназию Луитпольда, известную как прогрессивное и весьма либеральное учебное заведение, но которую он так и не окончил, переехав вслед за семьей в Милан. И в школе, и в гимназии Альберт Эйнштейн приобрел не лучшую репутацию. Чтение научно-популярных книг породило у юного Эйнштейна, по его собственному выражению, «прямо-таки фантастическое свободомыслие». В своих воспоминаниях физик-теоретик Макс Борн писал: «Уже в ранние годы Эйнштейн показал неукротимую волю к независимости. Он ненавидел игру в солдаты, потому что это означало насилие». Позже А. Эйнштейн говорил, что людям, которым доставляет удовольствие маршировать под звуки марша, головной мозг достался зря, они вполне могли бы довольствоваться одним спинным.

Первый год в Швейцарии
В октябре 1895 шестнадцатилетний Альберт Эйнштейн пешком отправился из Милана в Цюрих, чтобы поступить в Федеральную высшую техническую школу — знаменитый Политехникум, для поступления в который не требовалось свидетельства об окончании средней школы. Блестяще сдав вступительные экзамены по математике, физике и химии, он, однако, с треском провалился по другим предметам. Ректор Политехникума, оценив незаурядные математические способности Эйнштейна, направил его для подготовки в кантональную школу в Аарау (в 20 милях к западу от Цюриха), которая в то время считалась одной из лучших в Щвейцарии. Год, проведенный в этой школе, которой руководил серьезный ученый и прекрасный педагог А. Таухшмид, оказался и очень полезным, и — по контрасту с казарменной обстановкой в Пруссии — приятным.

Учеба в Политехникуме
Выпускные экзамены в Аарау Альберт Эйнштейн сдал вполне успешно (кроме экзамена по французскому языку), что дало ему право на зачисление в Политехникум в Цюрихе. Кафедру физики там возглавлял профессор В. Г. Вебер, прекрасный лектор и талантливый экспериментатор, занимавшийся в основном вопросами электротехники. Поначалу он очень хорошо принял Эйнштейна, но в дальнейшем отношения между ними осложнились настолько, что после окончания учебы Эйнштейн некоторое время не мог устроиться на работу. В какой-то мере это объяснялось чисто научными причинами. Отличаясь консерватизмом взглядов на электромагнитные явления, Вебер не принимал теории Максвелла, представлений о поле и придерживался концепции дальнодействия. Его студенты узнавали прошлое физики, но не ее настоящее и, тем более, будущее. Эйнштейн же изучал труды Максвелла, был убежден в существовании всепроникающего эфира и размышлял о том, как на него действуют различные поля (в частности, магнитное) и как можно экспериментально обнаружить движение относительно эфира. Он тогда не знал об опытах американского ученого-физика Альберта Майкельсона и независимо от него предложил свою интерференционную методику.

Но опыты, придуманные Альбертом Эйнштейном, со страстью работавшим в физическом практикуме, не имели шансов осуществиться. Преподаватели недолюбливали строптивого студента. «Вы умный малый, Эйнштейн, очень умный малый, но у вас есть большой недостаток — вы не терпите замечаний», — сказал ему как-то Вебер, и этим определялось многое.

Бюро патентов. Первые шаги А. Эйнштейна к признанию
После окончания Политехникума в 1900 году, молодой дипломированный преподаватель физики (Эйнштейну шел тогда двадцать второй год) жил в основном у родителей в Милане и два года не мог найти постоянной работы. Только в 1902 он получил наконец, по рекомендации друзей, место эксперта в федеральном Бюро патентов в Берне. Незадолго до этого Альберт сменил гражданство и стал щвейцарским подданным. Через несколько месяцев после устройства на работу он женился на своей бывшей цюрихской однокурснице Милеве Марич, родом из Сербии, которая была на четыре года старше его. В Бюро патентов, которое Эйнштейн называл «светским монастырем», он проработал семь с лишним лет, считая эти годы самыми счастливыми в жизни. Должность «патентного служки» постоянно занимала его ум различными научными и техническими вопросами, но оставляла достаточно времени для самостоятельной творческой работы. Ее результаты к середине «счастливых бернских лет» составили содержание научных статей, которые изменили облик современной физики, принесли Эйнштейну мировую славу.

Броуновское движение
Первая из этих статей — «О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории», вышедшая в 1905 году, — была посвящена теории броуновского движения. Это явление (непрерывное беспорядочное зигзагообразное движение частичек цветочной пыльцы в жидкости), открытое в 1827 английским ботаником Робертом Броуном, уже получило тогда статистическое объяснение, но теория Эйнштейна (который не знал предшествующих работ по броуновскому движению) имела законченную форму и открывала возможности количественных экспериментальных исследований. В 1908 эксперименты французского физика Жана Батиста Перрена полностью подтвердили теорию Эйнштейна, что сыграло важную роль для окончательного становления молекулярно-кинетических представлений.

Кванты и фотоэффект
В том же 1905 году вышла и другая работа Эйнштейна — «Об одной эвристической точке зрения на возникновение и превращение света». За пять лет до этого немецкий физик Макс Планк показал, что спектральный состав излучения, испускаемого горячими телами, находит объяснение, если принять, что процесс излучения дискретен, то есть свет испускается не непрерывно, а дискретными порциями определенной энергии. Эйнштейн выдвинул предположение, что и поглощение света происходит теми же порциями и что вообще «однородный свет состоит из зерен энергии (световых квантов),… несущихся в пустом пространстве со скоростью света». Эта революционная идея позволила Эйнштейну объяснить законы фотоэффекта, в частности, факт существования «красной границы», то есть той минимальной частоты, ниже которой выбивания светом электронов из вещества вообще не происходит.

Идея квантов была применена Альбертом Эйнштейном и к объяснению других явлений, например, флуоресценции, фотоионизации, загадочных вариаций удельной теплоемкости твердых тел, которые не могла описать классическая теория.

Работы Эйнштейна, посвященные квантовой теории света, были удостоены в 1921 Нобелевской премии.

Частная (специальная) теория относительности
Наибольшую известность А. Эйнштейну все же принесла теория относительности, изложенная им впервые в 1905, в статье «К электродинамике движущихся тел». Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики.

Эйнштейн выдвинул удивительный и на первый взгляд парадоксальный постулат, что скорость света для всех наблюдателей, как бы они ни двигались, одинакова. Этот постулат (при выполнении некоторых дополнительных условий) приводит к полученным ранее Хендриком Лоренцом формулам для преобразований координат и времени при переходе из одной инерциальной системы отсчета в другую, движущуюся относительно первой. Но Лоренц рассматривал эти преобразования как вспомогательные, или фиктивные, не имеющие непосредственного отношения к реальному пространству и времени. Эйнштейн понял реальность этих преобразований, в частности, реальность относительности одновременности.

Таким образом, принцип относительности, установленный для механики еще итальянским ученым и физиком Галилеем, был распространен на электродинамику и другие области физики. Это привело, в частности, к установлению важного универсального соотношения между массой М, энергией Е и импульсом Р: E2= М2 c4 + P2 с2 (где с — скорость света), которое можно назвать одной из теоретических предпосылок использования внутриядерной энергии.

Профессорская деятельность.
 Приглашение в Берлин. Общая теория относительности
В 1905 Альберту Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. В 1909 он избран профессором Цюрихского университета, а через два года — Немецкого университета в Праге.

В 1912 Эйнштейн возвратился в Цюрих, где занял кафедру в Политехникуме, но уже в 1914 принял приглашение переехать на работу в Берлин в качестве профессора Берлинского университета и одновременно директора Института физики. Германское подданство Эйнштейна было восстановлено. К этому времени уже полным ходом шла работа над общей теорией относительности. В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М. Гроссмана в 1912 появилась статья «Набросок обобщенной теории относительности», а окончательная формулировка теории датируется 1915 годом. Эта теория, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Опираясь на всем известный факт, что «тяжелая» и «инертная» массы равны, удалось найти принципиально новый подход к решению проблемы, поставленной еще английским физиком Исааком Ньютоном: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия.

Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама «геометрия» пространства — времени. Любое массивное тело, по Эйнштейну, вызывает вокруг себя «искривление» пространства, то есть делает его геометрические свойства иными, чем в геометрии Евклида, и любое другое тело, движущееся в таком «искривленном» пространстве, испытывает воздействие первого тела.

Общая теория относительности привела к предсказанию эффектов, которые вскоре получили экспериментальное подтверждение. Она позволила также сформулировать принципиально новые модели, относящиеся ко всей Вселенной, в том числе и модели нестационарной (расширяющейся) Вселенной.

Эмиграция
Альберт Эйнштейн не без колебаний принял предложение переехать в Берлин. Но возможность общения с крупнейшими немецкими учеными, в числе которых был и Планк, привлекала его.
Политическая и нравственная атмосфера в Германии делалась все тягостнее, антисемитизм поднимал голову, и когда власть захватили фашисты, Эйнштейн в 1933 навсегда покинул Германию. Впоследствии в знак протеста против фашизма он отказался от германского подданства и вышел из состава Прусской и Баварской Академий наук.

В берлинский период, кроме общей теории относительности, Эйнштейном была разработана статистика частиц целого спина, введено понятие вынужденного излучения, играющего важную роль в лазерной физике, предсказано (совместно с де Гаазом) явление возникновения вращательного импульса тел при их намагничивании и др. Однако, будучи одним из создателей квантовой теории, Эйнштейн не принял вероятностной интерпретации квантовой механики, полагая, что фундаментальная физическая теория не может быть статистической по своему характеру. Он нередко повторял, что «Бог не играет в кости» со Вселенной.

Переехав в США, Альберт Эйнштейн занял должность профессора физики в новом институте фундаментальных исследований в Принстоне (штат Нью-Джерси). Он продолжал заниматься вопросами космологии, а также усиленно искал пути построения единой теории поля, которая бы объединила гравитацию, электромагнетизм (а возможно, и остальное). И хотя реализовать эту программу ему не удалось, это не поколебало репутации Эйнштейна как одного из величайших естествоиспытателей всех времен.

В Принстоне Эйнштейн стал местной достопримечательностью. Его знали как физика с мировым именем, но для всех он был скромным, приветливым и несколько эксцентричным человеком, с которым можно было столкнуться прямо на улице. В часы досуга он любил музицировать. Начав учиться игре на скрипке в шесть лет, Эйнштейн продолжал играть всю жизнь, иногда в ансамбле с другими физиками. Ему нравился парусный спорт, который, как он полагал, необыкновенно способствует размышлениям над физическими проблемами.

Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952, которое он не принял.
Будучи последовательным сторонником сионизма, Альберт Эйнштейн приложил немало усилий к созданию Еврейского университета в Иерусалиме в 1925 году.

В умах многих людей имя Эйнштейна связано с атомной проблемой. Действительно, понимая, какой трагедией для человечества могло бы оказаться создание в фашистской Германии атомной бомбы, он в 1939 направил президенту США письмо, послужившее толчком для работ в этом направлении в Америке. Но уже в конце войны его отчаянные попытки удержать политиков и генералов от преступных и безумных действий оказались тщетными. Это было самой большой трагедией его жизни.

Альберт Эйнштейн скончался 18 апреля 1955 в Принстоне, США, от аневризмы аорты.
Источник

Согласно Альберту Эйнштейну, для того, чтобы путешествовать в будущее, нам нужно достигнуть скорости света. Для того чтобы отправиться в прошлое, нам нужно превысить скорость света.

Нынешним рекордсменом по путешествию во времени является Сергей Крикалёв. Он пролетел примерно 337 миль вокруг земной орбиты на скорости 28 км/ч (17,450 миль в час) – и фактически, в общей сложности, переместился на 0,02 секунды в будущее. Это значит, что в этот момент он делает шаг на две сотые секунды раньше, чем вы видите, как он это делает. Так что, путешествие в будущее вполне возможно.

Но никто никогда не перемещался в прошлое. И никто не сможет, если только мы не превысим скорость света, что подтвердят вам следующие факты:

9. Парадокс петли

Термин получил своё название благодаря рассказу Роберта Хайнлайна «По пятам», в котором много построено именно на этом явлении.

Альтернативная история – одна из самых распространённых концепций путешествий во времени, которая основывается на возможности изменять историю, случайно или намеренно, во время временных путешествий. Единственная оговорка – утверждение, что любое изменение, внесённое путешественником во времени в историю, всегда является тем, что и так должно было случиться (смотреть пункт №3).

Но момент, который это утверждение не покрывает – это простой факт того, что любой объект, путешествующий во времени, стареет совершенно обычно. Путешествие выше скорости света не означает, что человек может остаться вечно молодым; он может вернуться на Землю через 10 лет, при том, что на ней пройдёт 1000, но он всё равно будет на 10 лет старше, и когда-нибудь умрёт. То же самое происходит и с неживыми объектами. Представим, что вы переложили свою речь на получение премии Оскар, а затем забрались в машину времени, и вернулись на 30 минут обратно, когда ещё помнили, где она была, забрали её, и вернулись сквозь прореху во времени, и отправили её на своё выступление «Линкольна». Но к этому мы вернёмся в пункте №3.

К слову: любой объект, путешествующий во времени, на момент перемещения ни как не отражается в истории. Через 100 миллионов лет лист бумаги превратится в пыль, как и сам путешественник. Но шоу должно продолжаться, и Оскар отойдёт к тому же человеку, который примет его без речи, потому что она больше не существует за пределами истории, чтобы вернуть её к нему в будущее.

А теперь представим передачу самой информации назад в будущее. Представим, что вы изобрели машину времени, и использовали её для путешествий в прошлое на 1000 лет. Вы делитесь знаниями о путешествиях во времени с людьми этой эпохи, и они начинают пользоваться ей. Через 1000 лет вы изобретаете машину времени, возвращаетесь в прошлое… и так далее. Но тогда у нас возникает проблема, поскольку не может быть больше одного источника чего-либо, в итоге изобретение путешествия во времени лишится своего, и момент появления этого изобретения настолько же неопределим, как результат деления на ноль.

8. Теория Слабой Формы Космической Цензуры

Стивен Хокинг на протяжении всей своей карьеры работал с чёрными дырами, и большая часть того, что мы о них знаем, основана на его работах. Поверхность чёрной дыры представляет собой «горизонт событий», и как только какой-либо объект пересекает его и входит в дыру, он перестаёт существовать в нашем пространстве-времени. Его притянет невероятно мощной гравитацией в бесконечно тонкий пучок энергии, который называется сингулярностью.

В своих работах Хокинг представляет теорию о том, что только ужасающая энергия чёрных дыр может создать сингулярность. Теория слабой формы космической цензуры гласит, что не существует сингулярности, не скрытой чёрной дырой, и что сингулярность никогда не будет открыта человеческому наблюдению. Сингулярность – основная из тем, рассматриваемых космологией, поскольку одна из теорий о чёрных дырах характеризует их как гравитационные поля, настолько сильные, что они наделяют все входящие в них объекты сверхсветовой скоростью. Сингулярность – двигатель гравитации чёрных дыр.

Так что, если бы космический корабль хотел разрушить световой барьер, ему нужно было бы просто пролететь сквозь чёрную дыру, и когда бы он вылетел с другой стороны, он бы продолжил двигаться с той же скоростью – то есть, корабль был бы запущен на сверхсветовой скорости, так что он смог бы вернуться на Землю в определённый момент в прошлом.

Но ни один объект не может выжить во время сингулярности чёрной дыры. Предмет может просто быть уничтожен, очевидно, нарушив закон сохранения массы. Значит, пока не доказано, что сингулярность может существовать за пределами чёрной дыры, этот метод путешествия в прошлое невозможен.

7. «Кротовые Норы» Нарушают Законы Физики

Все наши представления о путешествиях во времени основываются на том, что мы знаем о физических свойствах и взаимосвязях Вселенной. При этом мы решили, что группа математиков, совершенно далёких от физики, будет описывать физические законы на микроскопическом уровне, и назвали это квантовой физикой. Эта группа также выдвинула мощную теорию о существовании «мостов Эйнштейна-Розена», названных в честь двоих учёных, которые внесли наибольший вклад в наше понимание этой темы.

Эти «мосты» гораздо чаще называют «кротовыми норами» или «червоточинами», ведь они подобны норам, прорытым в пространстве-времени. Если бы мы могли воспользоваться ими, то ближайший путь между двумя точками в пространстве-времени равнялся бы не прямой линии, а нулю, что связано с «прокалыванием» пространства-времени в точке отправления и точке назначения, подобно проделыванию дыр в листе бумаги; затем произошло бы мгновенное складывание пространства-времени, пока две точки не достигли бы соприкосновения друг с другом, и тогда путешественник мог бы переместиться из пункта А в пункт Б, а пространство-время развернулось бы в своё первоначальное положение. Это не потребовало бы никаких физических усилий, хотя место назначения могло бы находиться на другом конце открытой на тот момент части Вселенной, и космический корабль не приблизился бы и не превзошёл скорость света, он бы просто телепортировал.

Похоже, это дало бы возможность путешествовать в прошлое без достижения скорости света, но при этом никто не учитывает, что же происходит внутри самой «кротовой норы». Физики понятия не имеют об этом, и порой признают возможность того, что внутри «норы» не существует законов физики в том виде, как мы их знаем, либо их там не существует вообще. Если же мы попытаемся понять путешествие через «кротовые дыры» с точки зрения физики, то у нас даже нет отправной точки для исследований, и мы даже не прошли в этом и первую стадию.

6. Никаких Туристов из Будущего.

Давайте немного отойдём от математики, ведь теория, которой твёрдо придерживаются светлые умы математического сообщества, включая Стивена Хокинга, уже имеет своё вполне доступное пониманию доказательство того, что путешествия выше скорости света невозможны: насколько нам известно, среди нас нет людей из будущего. Именно для этой цели академиками и даже простыми старыми любителями научной фантастики создавались встречи, на которых они обсуждали данный вопрос, ожидая гостей из будущего. Замысел состоял в том, что в будущем люди знали бы о таких встречах точно так же, как мы сейчас знаем о Второй мировой; для нас это история. Так что, если бы путешествия во времени когда-нибудь могли бы стать реальностью, путешественники давно должны были вернуться из будущего и доказать возможность таких перемещений.

Однако, разумеется, ничего такого не произошло, и поскольку мы говорим о целом будущем с настоящего момента до конца времён, то должно быть довольно много путешественников из самых разных моментов будущего, появляющихся в самых разных моментах своего прошлого. Но существует забавная критика этого представления, заключающаяся в справедливом вопросе: «С чего это кто-нибудь будет возвращаться в наше время? Путешествие в 1 сентября 1939 ещё имеет какой-то смысл, но в сегодняшний день? Если бы они хотели о чём-нибудь нас предупредить, что бы это было? Они что, вернулись бы с какой-нибудь гениальной философией о том, как создать мир во всём мире?»

Представьте: вы можете переместиться в любой момент в прошлом, куда только пожелаете. Что же вы захотите увидеть? 90% или даже больше предполагаемых путешественников наверняка захотят выяснить, существовал ли Иисус Христос в действительности. Но захотели бы вы вернуться в настоящее время, чтобы предотвратить неминуемую войну между Израилем и ХАМАС? Пока никто не попытался.

5. Парадокс Близнецов

Этот парадокс более подробно рассматривает путешествия в будущее. Он подразумевает теоретическую историю о двух новорожденных, совершенно идентичных близнецах, один из которых остаётся на Земле, а второй – путешествует до Проксимы Центавры, ближайшей звезды, находящейся на расстоянии 4 световых лет. Если космический корабль будет перемещаться на скорости, равной 80% от скорости света, что, как ни странно, кажется вполне реалистичным, путешествие в оба конца составит 10 лет. Это означает, что оставшийся на Земле близнец будет на 10 лет старше, когда его брат вернётся.

Но на корабле команда наблюдает за тем, как Проксима Центавра и Земля движутся относительно космического корабля, и это приводит к тому, что расстояние от пункта А до пункта Б сокращается до 2,4 световых года, вместо 4. Каждый отрезок пути займёт 2,4 световых года, которые, поделённые на скорость – 80% от скорости света – составят продолжительность полёта в 3 года, 6 лет в оба конца. Таким образом, близнец, находящийся на борту, вырастет на 6 лет за тот же период времени. Это не кажется логически невозможным.

Но что выглядит совершенно невозможным, так это если один из близнецов будет путешествовать на 101% или больше от скорости света. Это заставит его, по крайней мере, согласно указанному выше сценарию, как мы его понимаем, перенестись в прошлое и прекратить существовать, т.е. исчезнуть с борта корабля, и не вернуться к своему брату на Землю.

4. E = MC в квадрате.

Самое известное уравнение в истории математики описывает эквивалентность массы и энергии. Как печально известно, в 1942 году оно было использовано как замечательная идея для создания нового мощного оружия. Эйнштейн и не представлял, что его творение может быть использовано для создания более крупной и более совершенной бомбы, и просто плакал, когда Энрико Ферми и Роберт Оппенгеймер объяснили, что происходило в Оук-Ридже, городе в штате Теннесси.

Помимо объяснения, сколько энергии содержится в предмете при какой массе, уравнение также предоставляет объяснение того, что происходит с массой, когда она движется быстрее. Чем быстрее движется какое-либо тело, тем больше энергии требуется для того, чтобы поддерживать это движение. Если объект достигает скорости света, он достигает бесконечной массы, а значит, требует бесконечной энергии для продолжения своего движения.

Это не делает невозможным путешествия в будущее, потому что всё, что необходимо объекту для этого – достигнуть скорости света. Фактически, вы перемещаетесь в будущее, даже когда идёте на кухню взять бутылочку пива. Расстояние, на которое вы продвинетесь в будущее, слишком незначительно для того, чтобы о нём беспокоиться. Но, технически, вы также набираете точно такое же незначительное количество массы. Энергия, необходимая для того, чтобы переместить большой объект, такой, как космический корабль, на любое значительное расстояние в будущее, если придерживаться нашей системы координат, будет больше или равна энергии, заключённой сейчас в VY Большого Пса, крупнейшей звезде среди известных нам.

Но превышение скорости света переместит путешественника в прошлое, и это потребует безграничных, или даже больше, чем безграничных, объёмов энергии. И этого невозможно достичь.

3. Временная Петля

Этот парадокс также рассматривает один особый сценарий: изобретение первой машины времени. Изобретатель возвращается обратно в прошлое в попытке заставить своих бабушку и дедушку влюбиться друг в друга, и случайно убивает своего дедушку (см. №2). Затем, не желая исчезать из будущего, он спит со своей будущей бабушкой и становится отцом своего отца, делая, таким образом, своё существование возможным, чтобы в будущем снова вернуться в прошлое, снова стать отцом своего отца и так далее.

Этот парадокс нелогичен, потому что он описывает эффект в будущем, произошедший до того, как появится его причина в прошлом. Представьте, что вы должны были вернуться в прошлое до Большого Взрыва, каким-нибудь образом устроить Большой Взрыв и с помощью этого создать Вселенную. По правилам судьбы это даст вам возможность родиться через 13,5 миллиардов лет, чтобы создать машину времени и вернуться в прошлое, чтобы создать Вселенную, чтобы машина времени могла быть изобретена. И тогда этот процесс изначально теряет смысл.

2. Парадокс Времени

Этот парадокс, по сути, — негативная версия № 3, который также называют «парадоксом убитого дедушки». Путешествие в прошлое станет совершенно невозможным, потому что оно даст возможность вернуться в прошлое и убить самого себя. Но если вы умрёте, то кто вернётся в прошлое, чтобы убить самого себя? Критики, и в особенности фанаты научной фантастики, сразу же отвечают, что наше понимание математики развивается с каждым днём благодаря таким людям, как Ньютон, Эйнштейн, Хокинг и Митио Каку, и с этим приходит и развивается понимание логики путешествий во времени.

Лучший на данный момент аргумент против парадокса времени – это Мультивселенная, которая наполнена бесконечным количеством проекций одного и того же человека, делающего бесконечное количество вещей в бесконечное количество моментов своей жизни. Вас могут заколоть в сто лет в пьяной драке в другой Вселенной, но при этом вы умрёте от рака, будучи ребёнком, в этой. Наше нынешнее понимание квантовой механики и квантовой физики даёт немало оснований для существования Мультивселенной. А это означает разрешение временного парадокса и некоторых других, и это даст вам будущее после того, как вы убили себя в прошлом. Но всё ещё нет полностью сформированной теории о существовании Мультивселенной, а пока её существование не доказано, временной парадокс имеет место.

1. Отсутствие «Теории Всего»

естно говоря, предыдущие статьи основаны больше на логике, чем на чистой математике, однако мы можем только строить загадки относительно всего, что касается путешествий во времени, основываясь на нашем поверхностном понимании этого вопроса. Вся жизнь Альберта Эйнштейна была сосредоточена на том, что мы теперь называем Относительностью. Он создал две теории о ней, но следующей ступенью, более важной, было связать общую теорию относительности с электромагнетизмом. Эйнштейн умер, не закончив работу над этим, и сегодняшние «великие умы» тоже недалеко от него ушли. «Высшая» форма современной математики носит название «М-теории», которая всё ещё не была полностью изложена. Она – почти религия для математиков, потому как она настолько непонятна и неизучена, что некоторые в неё даже не верят.

Эта теория описывает 11 измерений Вселенной вместо привычных 4, и лидеры в её изучении ожидают, что он сможет объединить 5 различных теорий струн, предшествовавших ей; и подумать только, что может быть единственной оставшейся ступенью до её формирования: объединение физических характеристик и законов всех 4 фундаментальных взаимодействий Вселенной. «М-теория» ищет точки соприкосновения Общей Относительности и Квантовой Гравитации с точки зрения объединения всех 4 взаимодействий. Сделать это означает взглянуть с математической точки зрения на то, как Вселенная появилась и то, как она развивалась, когда существовал бесконечно малый смысл создания всей той материи и энергии, которая заключена в ней сейчас. Понимание такого уровня физики потребует математического понимания того, как управлять пространством-временем и проецировать время в будущее и возвращать время в прошлое. Но пока никто не объединит все 4 взаимодействия в одно физическое образование, распространяющееся на каждый отрезок пространства-времени, мы не сможем достичь «когда-угодно».
источник

 

Альберт Эйнштейн оставил глубокий след в истории человечества как выдающийся физик, создатель целого ряда революционных физических теорий, автор множества научных работ. Но далеко не все знают, что этот замечательный ученый был и одним из мудрейших людей своего времени, который поделился с нами в своих публикациях большим количеством жизненных советов и наблюдений. Некоторые из них мы вам напомним в этой статье.

1. Мы все рождаемся гениями, но жизнь исправляет это

«Все мы гении. Но если вы будете судить рыбу по ее способности лазать по деревьям, то она проживет всю жизнь, считая себя дурой».

2. Относитесь ко всем с достоинством и уважением

«Я разговариваю со всеми одинаково, независимо от того, кто это — мусорщик или президент университета».

3. Мы все едины

«Человек — это часть целого, которое мы называем Вселенной, часть, ограниченная во времени и в пространстве. Он ощущает себя, свои мысли и чувства как нечто отдельное от всех окружающих, что является своего рода оптическим обманом его сознания. Эта иллюзия стала темницей, заключающей нас в мире собственных желаний и привязанностей к узкому кругу близких нам людей. Наша задача — освободиться из этой тюрьмы, расширив сферу своего участия до всякого живого существа, до целого мира, во всем его великолепии».

4. Случайных совпадений не бывает

«Совпадения — это один из способов, с помощью которых Бог сохраняет свою анонимность».

5. Воображение гораздо важнее знаний

«Воображение гораздо важнее знаний. Знания опираются лишь на то, что мы сейчас знаем и понимаем, в то время как воображение включает в себя целый мир и все то, что мы когда-либо поймем и узнаем».
«Настоящий признак интеллекта не знания, а воображение».
«Логика поможет вам добраться от A до Z; воображение проведет вас по всему миру».

6. Одиночество может быть восхитительным для зрелой личности

«Одиночество является болезненным, когда человек молод, но восхитительным, когда он становится более зрелым».
«Я живу в одиночестве; оно отвратительно для молодых, но приобретает прекрасный вкус с годами».
«Однообразие и одиночество спокойной жизни стимулирует творческий ум».

7. Делайте то, что чувствуете в своем сердце, и будете правы. А критиковать вас будут в любом случае

«Великие умы всегда сталкиваются с яростным сопротивлением со стороны умов посредственных. Посредственности не в состоянии понять человека, который отказывается слепо склониться перед принятыми предрассудками, а вместо этого мужественно и честно использует свой интеллект».

8. Самые прекрасные вещи в нашей жизни являются таинственными и непостижимыми

«Если вы хотите, чтобы ваши дети были умными, читайте им сказки. Если вы хотите, чтобы они стали еще умнее, то читайте им больше сказок».
«Дар фантазии значит для меня больше, чем моя способность впитывать знания».
«Самые прекрасные вещи, которые мы испытываем, невозможно объяснить. Непостижимое служит источником подлинного искусства и науки. Тот, кому это чувство незнакомо, кто не может сделать паузу и испытать восхищение перед непознанным, чувствует себя, как мертвец: его глаза закрыты».

9. Религия и наука должны работать вместе, а не против друг друга

«Наука без религии хрома, религия без науки слепа».
«Ученые были оценены церковью как величайшие еретики, но на самом деле они являются религиозными людьми из-за их веры в упорядоченность Вселенной».

10. Ваша значимость важнее успеха

«Стремись не к тому, чтобы добиться успеха, а к тому, чтобы стать полезным».
«С приходом славы я становлюсь все более и более тупым, что, впрочем, является довольно распространенным явлением».

11. Ошибки являются признаком роста и прогресса

«Человек, который никогда не ошибался, никогда не пробовал ничего нового».

12. Цените простоту

«Если вы не можете объяснить это просто, то вы сами не понимаете предмет достаточно хорошо».
«Все должно быть представлено настолько просто, насколько это возможно. Но не более».

13. Не создавайте себе кумиров

«Любой должен быть уважаем как личность, но никто не должен стать идолом».

14. Наказание не делает человека лучше

«Если человек остается добропорядочным только чтобы избежать наказания или получить награду, то ничего хорошего из этого не выйдет».

15. Жизнь — это служение

«Только жизнь, прожитую для других, можно назвать полноценной жизнью».
«Ценность человека заключается в том, что он дает, а не в том, что он способен получить».

16. Никогда не прекращайте учиться

«Интеллектуальный рост должен начаться при рождении и прекратиться только в момент смерти».

17. Не переставайте задавать вопросы

«Учитесь у вчерашнего дня, живите сегодня, надейтесь на завтра. Важно не переставать задавать вопросы. Любопытство имеет все основания для существования».
«Такие люди, как вы и я, хотя и смертны, конечно, как и все остальные, но никогда не стареют, независимо от того, как долго мы живем. Я имею в виду, что мы никогда не перестанем стоять, как любопытные дети, перед великим Таинством, в котором мы родились».

18. Все зависит от вас

«Наш мир является опасным для жизни местом, но не потому, что некоторые творят зло, а потому, что все остальные видят это и ничего не делают».

19. Не бойтесь высказывать свое мнение

«Мало кто способен спокойно высказать мнение, противоречащее господствующим в обществе предрассудкам. Большинство людей даже не способны сформировать такое мнение».

20. Позвольте природе быть вашим учителем

«Приглядитесь лучше к природе, и после этого вы многое поймете лучше».

21. Измените свое сознание, и это изменит вашу жизнь

«Мир, который мы имеем, был создан в процессе нашего мышления. Он не может быть изменен без изменения нашего сознания».
«Мы не сможем решить наши проблемы с тем же мышлением, которым мы создавали их».

22. Цель — это главное

«Если хотите прожить счастливую жизнь, то вы должны быть привязаны к целям, а не к людям или вещам».

23. Мы становимся счастливее, делая счастливыми других

«Лучший способ порадовать себя — это доставить радость кому-либо еще».

24. У вас нет никаких ограничений, кроме тех, которые вы сами себе поставили

«Только тот, кто пытается сделать абсурдную вещь, может достичь невозможного».
«Вот вопрос, который иногда меня озадачивает: это я сумасшедший или все остальные?»

25. Правильные поступки не всегда делают вас популярным

«Что правильно, то не всегда популярно, и то, что популярно, далеко не всегда правильно».

26. Трудности дарят новые возможности

 «Среди беспорядка ищите простоту. Среди диссонанса ищите гармонию. В препятствиях найдите возможности».

27. Вы не сможете добиться мира, используя силу

«Мира никогда нельзя достичь через силу. Он достигается только через взаимопонимание».
«Нельзя одновременно предотвращать и готовиться к войне».

28. Мелочей не бывает

«Тому, кто небрежен с правдой в мелочах, нет доверия и в важных вещах».

29. Ходите своими путями

«Человек, который следует за толпой, как правило пройдет не дальше, чем толпа. Человек, который ходит сам по себе, сможет, вероятно, оказаться в таких местах, где никто никогда не был».

30. Прислушивайтесь к интуиции

«Интуиция — это священный дар, а рациональный ум — верный слуга. Мы создали общество, которое воздает почести слуге и забыло о даре».
«Я никогда не сделал бы своих открытий в процессе рационального мышления».

31. Мудрость — это не результат обучения

«Мудрость является не продуктом обучения, а пожизненной попыткой ее приобрести».
123