опыт

Оказывается, рыжую лису можно перекрасить и без краскиНаверное, нет такого школьника, который бы с увлечением не прочитал замечательной сказки И. Я. Франко «Крашеная лиса». И оказывается, рыжую лису можно «перекрасить» и без краски.

Опыт. На плотной белой бумаге рисуют лису и вырезают рисунок ножницами. В химическом стакане приготовляют насыщенный раствор K2Cr2O7 в разбавленной Н2SO4. Белую лису полностью погружают в этот раствор – он становится рыжим. Мокрую лису вбрасывают в большой химический стакан, раньше времени наполненный газообразным SO2. Душный серный газ действует на рыжую лису и она быстро становится голубой или синей. Такая метаморфоза происходит благодаря окислительно-восстановительному преобразованию. При этом получается хромокалиевый галун:

K2Cr2O7(оранжевый) + 3SO2 + Н2SO4 + 23Н2O = 2КCr(SO4)2*12Н2O(синий).

Наиболее легко серный газ можно получить вследствие взаимодействия концентрированной Н2SO4 с медными стружками или Na2SO3 (немного увлажненный водой). Реакции проводят при слабом нагревании:
Сu + 2Н2SO4 = СuSO4 + 2Н2O + SO2;

2SO3 + 2Н2SO4 = 2NаНSO4 + Н2O + SO2.

Источник

8 волшебных опытов, которые заставят детей ахнуть

Все знают, что любой, даже самый удивительный опыт

можно объяснить. Пусть так, но восхищение и восторг детей от этого не уменьшаются. А взрослые тоже радуются, совершая вместе с малышами маленькие открытия.

8 волшебных опытов, которые заставят детей ахнуть

8 волшебных опытов, которые заставят детей ахнуть

8 волшебных опытов, которые заставят детей ахнуть

8 волшебных опытов, которые заставят детей ахнуть

8 волшебных опытов, которые заставят детей ахнуть

8 волшебных опытов, которые заставят детей ахнуть

8 волшебных опытов, которые заставят детей ахнуть

8 волшебных опытов, которые заставят детей ахнуть

источник

Научные гифки, на которые стоит посмотреть

Стальная вата и батарейка

Шарики гидрогеля и подкрашенная вода

Научные гифки, на которые стоит посмотреть

Смещение веса

Научные гифки, на которые стоит посмотреть

Горение спички

Научные гифки, на которые стоит посмотреть

a² + b² = c²

Научные гифки, на которые стоит посмотреть

Горение дихромата аммония

Научные гифки, на которые стоит посмотреть

Карандаш под напряжением

Научные гифки, на которые стоит посмотреть

Неодимовый магнит и телевизор

Научные гифки, на которые стоит посмотреть

Горение этанола с борной кислотой

Научные гифки, на которые стоит посмотреть

Жидкий азот и 1500 шариков для пинг-понга

Научные гифки, на которые стоит посмотреть

Пожарная граната

Научные гифки, на которые стоит посмотреть

Физика может быть интересной

Научные гифки, на которые стоит посмотреть

Крутой учитель химии!
Научные гифки, на которые стоит посмотреть

Видео: что будет, если поджечь 7000 спичек
На сей раз из семи тысяч спичек соорудили большой трехуровневый торт.
Огненная цепная реакция неудержимо поглощает импровизированную конструкцию.
Пламя распространяется медленнее, чем можно ожидать, но зрелище от этого становится лишь более эффектным!

Объяснение 10 гипнотизирующих научных gif

1. Голубая магнитная шпатлёвка (пластилин)

Вы, наверняка, хоть раз в жизни играли с магнитным пластилином. Если нет, то вы должны знать, что он обладает вязкоупругими свойствами, то есть вы можете и вылить его как жидкость, и заставить отскакивать как твердое тело. Это также дилатантная жидкость, что означает, что её вязкость возрастает при увеличении скорости деформации сдвига.

На картинке тот же самый магнитный пластилин, но на этот раз в него добавили порошок оксида железа. Оксид железа заставит любое вещество реагировать на магнитные силы. Теперь всё, что вам нужно, это магнит, как сфера на картинке, и ваш пластилин будет действовать, так как будто имеет свой собственный разум.

2. Человеческая мёртвая петля

Мы не раз видели людей, делающих мёртвые петли на скейтбордах и мотоциклах, однако Дэмиан Уолтерс — первый человек, который сделал это на бегу. Чтобы сделать это и не упасть, вы должны развить правильную скорость; тогда центробежные силы удержат вас на трассе.

Обратите внимание, как линия его плеч замирает в центре петли. В данном случае, Дэмиану было необходимо разогнаться до 13,92 км в час в самой высокой точке для получения инерции, достаточной, чтобы повернуть своё тело и ноги вокруг головы так быстро, что когда сила тяжести, наконец, победит, его ноги будут уже внизу на трассе.

3. Квантовая левитация

Край стола является магнитом, а шайба — это обычная пластина, покрытая на полмикрона (около одной сотой ширины волоса) сверхпроводником. Сверхпроводники проводят электрический ток с нулевым сопротивлением при охлаждении до экстремальных температур (поэтому шайба покрыта инеем). Левитация возможна благодаря квантовому захвату (также известному как пиннинг магнитного потока). Сверхпроводники имеют нулевое электрическое сопротивление, и они всегда хотят изгнать магнитные поля из себя.

В этой ГИФке, из-за того, что сверхпроводниковый слой вокруг пластины настолько тонкий, некоторые магнитные поля попадают в «ловушку» внутри него. Сверхпроводник не может двигать магнитное поле, не нарушая сверхпроводящего состояния, поэтому попавшие в ловушку куски магнитного поля просто остаются там, оставляя шайбу в «парящем» положении. И так как трасса представляет собой круг с тем же магнитным полем на всём протяжении, шайба может путешествовать вокруг, никогда не нарушая блокировку.

4. Орбиты Земли и Венеры

Венера проходит орбиту вокруг Солнца за 224,7 земных суток. Сначала это кажется случайным числом, но при масштабировании во времени мы видим, что обе планеты смыкают свои орбиты в соотношении 13:8 (Венера:Земля, соответственно) — так, за каждые восемь лет на Земле, Венера делает оборот вокруг Солнца примерно 13 раз. Если мы проследим две орбиты за это время и нарисуем линию между ними каждую неделю, мы увидим, что они нарисуют красивый 5-сторонний симметричный узор. Если мы отметим на карте каждую точку, когда две планеты выстраиваются в ряд с Солнцем и запустим воображаемые линии, мы увидим почти идеальную 5-конечную звезду.

5. Пружинка падает в замедленной съёмке

Когда пружина растягивается, натяжение пытается сомкнуть её обратно в сжатое состояние. Натяжение пружины происходит в основном симметрично, то есть тянет оба конца в направлении центра. При вертикальном падении, нижний конец пытается падать, но напряжение действует в противоположном направлении, так что нижняя часть пружины остается неподвижной. Между тем, верхний конец сталкивается с ускорением силы тяжести G (9,81 м / с2) и натяжением пружины. И когда верхняя часть пружины ударится о нижнюю, устранив напряжение, которое противодействовало силе тяжести, наконец пружинка разрушается и падает на землю.

6. Взрыв стручка растения «недотрога»

Некоторые растения демонстрируют удивительные пути для воспроизводства. Например, недотрога обыкновенная семейства бальзаминовых (capensis). Когда семена созревают достаточно, чтобы начать новое поколение, их стручки взрываются, рассеивая семена в окружающей среде. Когда приходит время, стручки с семенами накапливают механическую энергию, основываясь на их уровне гидратации. Любые внешние раздражители перегружают систему, и стенки стручков быстро разрушаются, передавая энергию на семена и запуская их наружу.

7. Раскрытие сосновой шишки

В сухую погоду сосновые шишки открываются для рассеивания семян. Когда на улице сыро — это уже не благоприятные условия, и они закрываются, чтобы защитить семена. Сосновая шишка является наиболее распространенным примером «гидроморфа», который изменяет форму в зависимости от уровня влажности. Клетки внутри шишки мертвы, и весь процесс происходит автоматически. Когда шишки сухие, небольшая часть внешнего слоя чешуи в середине шишки сжимается, потянув всю чешую назад и открыв ее. Когда они влажные, влага приводит к расширению слоя таким образом, что она закрывает шишку.

8. Водяная печать

Водяная печать, иначе называемая «гидрографика», — это быстрый и эффективный способ покрытия объекта. Гидрографическую плёнку сначала помещают на поверхности ёмкости с водой. Сама плёнка быстро растворяется в воде, оставляя чернила спокойно плавать на поверхности. Объект осторожно погружают в воду, для того чтобы аккуратно перенести текстуру и детали плёнки. Вихревое движение рассеивает чернила, что позволяет безупречно отпечатать текстуру. Затем нужно просто высушить объект.

9. Муравьи ведут себя как жидкость и твёрдое тело

Муравьи, будучи социальной группой, выяснили, что, объединяясь и действуя как единый организм, они могут очень эффективно противодействовать внешним силам и адаптироваться к различным ситуациям. Скрепляясь друг с другом, они могут создать единую твердую и эластичную массу. Это, например, позволяет им выдержать большой толчок, который бы без труда сбросил одного муравья. Когда им нужно быть более гибкими в своём окружении, они просто двигаются по кругу внутри единой массы муравьёв, и это позволяет им выступать в качестве жидкости и легко преодолевать препятствия.

10. Дайвер вверх ногами подо льдом

Когда вы заметите, что пузырьки воздуха «падают» вниз, вы поймёте, что эти дайверы фактически ходят вверх ногами по обратной стороне льда на замёрзшем озере. Это становится возможным, когда они накачивают свое снаряжение воздухом, что заставляет их всплывать на поверхность. Небольшая настройка, и они могут имитировать гравитацию вверх ногами. Они могут делать это до тех пор, пока воздух не закончится, потому что давление воды вокруг них поддерживает их тела со всех сторон.

Объяснение 10 гипнотизирующих научных gif

Объяснение 10 гипнотизирующих научных gif

Объяснение 10 гипнотизирующих научных gif

Объяснение 10 гипнотизирующих научных gif

Объяснение 10 гипнотизирующих научных gif

Объяснение 10 гипнотизирующих научных gif

Объяснение 10 гипнотизирующих научных gif

Объяснение 10 гипнотизирующих научных gif

Объяснение 10 гипнотизирующих научных gif

источник

10 самых красивых опытов за историю физики
1. Эксперимент Эратосфена Киренского
В III веке до нашей эры библиотекарем знаменитой Александрийской библиотеки Эрастофеном Киренским был проведен один из самых древних известных физических экспериментов, в результате которого был измерен радиус Земли. Схема эксперимента проста. В полдень, в день летнего солнцестояния, в городе Сиене (ныне Асуан) Солнце находилось в зените и предметы не отбрасывали тени. В тот же день и в то же время в городе Александрии, находившемся в 800 километрах (5000 стадиях) от Сиена, Солнце отклонялось от зенита примерно на 7°. Это составляет около 1/50 полного круга (360°), откуда получается, что окружность Земли равна 40 000 километров, а радиус — 6300 километров. Измеренный столь простым методом радиус Земли оказался всего на 5% меньше значения, полученного самыми точными современными методами.

2. Эксперимент Галилео Галилея
В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это. Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту.

Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения. Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова.

Результаты, полученные Галилеем, — следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе.

3. Другой эксперимент Галилео Галилея
Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам.

Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится. Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики.

4. Эксперимент Генри Кавендиша
После того как Исаак Ньютон сформулировал закон всемирного тяготения: сила притяжения между двумя телами с массами Мит, удаленных друг от друга на расстояние r, равна F=g(mM/r2), оставалось определить значение гравитационной постоянной g. Для этого нужно было измерить силу притяжения между двумя телами с известными массами. Сделать это не так просто, потому что сила притяжения очень мала. Мы ощущаем силу притяжения Земли. Но почувствовать притяжение даже очень большой оказавшейся поблизости горы невозможно, поскольку оно очень слабо.

Нужен был очень тонкий и чувствительный метод. Его придумал и применил в 1798 году соотечественник Ньютона Генри Кавендиш. Он использовал крутильные весы — коромысло с двумя шариками, подвешенное на очень тонком шнурке. Кавендиш измерял смещение коромысла (поворот) при приближении к шарикам весов других шаров большей массы. Для увеличения чувствительности смещение определялось по световым зайчикам, отраженным от зеркал, закрепленных на шарах коромысла. В результате этого эксперимента Кавендишу удалось довольно точно определить значение гравитационной константы и впервые вычислить массу Земли.

5. Эксперимент Жана Бернара Фуко
Французский физик Жан Бернар Леон Фуко в 1851 году экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Плоскость качания маятника сохраняет неизменное положение по отношению к звездам. Наблюдатель же, находящийся на Земле и вращающийся вместе с ней, видит, что плоскость вращения медленно поворачивается в сторону, противоположную направлению вращения Земли.

6. Эксперимент Исаака Ньютона
В 1672 году Исаак Ньютон проделал простой эксперимент, который описан во всех школьных учебниках. Затворив ставни, он проделал в них небольшое отверстие, сквозь которое проходил солнечный луч. На пути луча была поставлена призма, а за призмой — экран. На экране Ньютон наблюдал «радугу»: белый солнечный луч, пройдя через призму, превратился в несколько цветных лучей — от фиолетового до красного. Это явление называется дисперсией света.

Сэр Исаак был не первым, наблюдавшим это явление. Уже в начале нашей эры было известно, что большие монокристаллы природного происхождения обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой еще до Ньютона выполнили англичанин Хариот и чешский естествоиспытатель Марци.

Однако до Ньютона подобные наблюдения не подвергались серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. И Хариот, и Марци оставались последователями Аристотеля, который утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к белому свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный — при наименьшем. Ньютон же проделал дополнительные опыты со скрещенными призмами, когда свет, пропущенный через одну призму, проходит затем через другую. На основании совокупности проделанных опытов он сделал вывод о том, что «никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных; количество света не меняет вида цвета». Он показал, что белый свет нужно рассматривать как составной. Основными же являются цвета от фиолетового до красного.

Этот эксперимент Ньютона служит замечательным примером того, как разные люди, наблюдая одно и то же явление, интерпретируют его по-разному и только те, кто подвергает сомнению свою интерпретацию и ставит дополнительные опыты, приходят к правильным выводам.

7. Эксперимент Томаса Юнга
До начала XIX века преобладали представления о корпускулярной природе света. Свет считали состоящим из отдельных частиц — корпускул. Хотя явления дифракции и интерференции света наблюдал еще Ньютон («кольца Ньютона»), общепринятая точка зрения оставалась корпускулярной.
Рассматривая волны на поверхности воды от двух брошенных камней, можно заметить, как, накладываясь друг на друга, волны могут интерферировать, то есть взаимогасить либо взаимоусиливать друг друга. Основываясь на этом, английский физик и врач Томас Юнг проделал в 1801 году опыты с лучом света, который проходил через два отверстия в непрозрачном экране, образуя, таким образом, два независимых источника света, аналогичных двум брошенным в воду камням. В результате он наблюдал интерференционную картину, состоящую из чередующихся темных и белых полос, которая не могла бы образоваться, если бы свет состоял из корпускул. Темные полосы соответствовали зонам, где световые волны от двух щелей гасят друг друга. Светлые полосы возникали там, где световые волны взаимоусиливались. Таким образом была доказана волновая природа света.

8. Эксперимент Клауса Йонссона
Немецкий физик Клаус Йонссон провел в 1961 году эксперимент, подобный эксперименту Томаса Юнга по интерференции света. Разница состояла в том, что вместо лучей света Йонссон использовал пучки электронов. Он получил интерференционную картину, аналогичную той, что Юнг наблюдал для световых волн. Это подтвердило правильность положений квантовой механики о смешанной корпускулярно-волновой природе элементарных частиц.

9. Эксперимент Роберта Милликена
Представление о том, что электрический заряд любого тела дискретен (то есть состоит из большего или меньшего набора элементарных зарядов, которые уже не подвержены дроблению), возникло еще в начале XIX века и поддерживалось такими известными физиками, как М. Фарадей и Г.Гельмгольц. В теорию был введен термин «электрон», обозначавший некую частицу — носитель элементарного электрического заряда. Этот термин, однако, был в то время чисто формальным, поскольку ни сама частица, ни связанный с ней элементарный электрический заряд не были обнаружены экспериментально. В 1895 году К. Рентген во время экспериментов с разрядной трубкой обнаружил, что ее анод под действием летящих из катода лучей способен излучать свои, Х-лучи, или лучи Рентгена. В том же году французский физик Ж. Перрен экспериментально доказал, что катодные лучи — это поток отрицательно заряженных частиц. Но, несмотря на колоссальный экспериментальный материал, электрон оставался гипотетической частицей, поскольку не было ни одного опыта, в котором участвовали бы отдельные электроны.

Американский физик Роберт Милликен разработал метод, ставший классическим примером изящного физического эксперимента. Милликену удалось изолировать в пространстве несколько заряженных капелек воды между пластинами конденсатора. Освещая рентгеновскими лучами, можно было слегка ионизировать воздух между пластинами и изменять заряд капель. При включенном поле между пластинами капелька медленно двигалась вверх под действием электрического притяжения. При выключенном поле она опускалась под действием гравитации. Включая и выключая поле, можно было изучать каждую из взвешенных между пластинами капелек в течение 45 секунд, после чего они испарялись. К 1909 году удалось определить, что заряд любой капельки всегда был целым кратным фундаментальной величине е (заряд электрона). Это было убедительным доказательством того, что электроны представляли собой частицы с одинаковыми зарядом и массой. Заменив капельки воды капельками масла, Милликен получил возможность увеличить продолжительность наблюдений до 4,5 часа и в 1913 году, исключив один за другим возможные источники погрешностей, опубликовал первое измеренное значение заряда электрона: е = (4,774 ± 0,009)х10-10 электростатических единиц.

10. Эксперимент Эрнста Резерфорда
К началу XX века стало понятно, что атомы состоят из отрицательно заряженных электронов и какого-то положительного заряда, благодаря которому атом остается в целом нейтральным. Однако предположений о том, как выглядит эта «положительно-отрицательная» система, было слишком много, в то время как экспериментальных данных, которые позволили бы сделать выбор в пользу той или иной модели, явно недоставало. Большинство физиков приняли модель Дж.Дж.Томсона: атом как равномерно заряженный положительный шар диаметром примерно 10-8 см с плавающими внутри отрицательными электронами.

В 1909 году Эрнст Резерфорд (ему помогали Ганс Гейгер и Эрнст Марсден) поставил эксперимент, чтобы понять действительную структуру атома. В этом эксперименте тяжелые положительно заряженные а-частицы, движущиеся со скоростью 20 км/с, проходили через тонкую золотую фольгу и рассеивались на атомах золота, отклоняясь от первоначального направления движения. Чтобы определить степень отклонения, Гейгер и Марсден должны были с помощью микроскопа наблюдать вспышки на пластине сцинтиллятора, возникавшие там, где в пластину попадала а-частица. За два года было сосчитано около миллиона вспышек и доказано, что примерно одна частица на 8000 в результате рассеяния изменяет направление движения более чем на 90° (то есть поворачивает назад). Такого никак не могло происходить в «рыхлом» атоме Томсона. Результаты однозначно свидетельствовали в пользу так называемой планетарной модели атома — массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см.

источник

10 самых красивых опытов за историю физики

10 самых красивых опытов за историю физики

10 самых красивых опытов за историю физики

10 самых красивых опытов за историю физики

10 самых красивых опытов за историю физики

10 самых красивых опытов за историю физики

10 самых красивых опытов за историю физики

10 самых красивых опытов за историю физики