неврология


Роль взаимоотношений полушарий большого мозга наиболее чет­ко проявляется при анализе функциональной межполушарной асим­метрии.

Асимметрия в функциях полушарий впервые была обнаружена в XIX в., когда обратили внимание на различные последствия повреждения левой и правой половины мозга.

В 1836 г. Марк_Дакс выступил на заседании медицинского об­щества в Монпелье (Франция) с небольшим докладом о больных, страдающих потерей речи — состояния, известного специалистам под названием афазии. Дакс заметил связь между потерей речи и поврежденной стороной мозга. В его наблюдениях более чем у 40 больных с афазией имелись признаки повреждения левого полуша­рия. Ученому не удалось обнаружить ни одного случая афазии при повреждении только правого полушария. Суммировав эти наблю­дения, Дакс сделал следующее заключение: каждая половина мозга контролирует свои, специфические функции; речь контролируется левым полушарием.

Его доклад не имел успеха. Спустя некоторое время после смерти Дакса Брокапри посмертном исследовании мозга больных, страдав­ших потерей речи и односторонним параличом, отчетливо выявил в обоих случаях очаги повреждения, захватившие части левой лобной доли. С тех пор эта зона стала известна как зона Брока; она была им определена, как область в задних отделах нижней лобной из­вилины.

Проанализировав связь между предпочтением одной из двух рук и речью, он предположил, что речь, большая ловкость в движениях правой руки связаны с превосходством левого полушария у праворуких.

Через 10 лет после публикации наблюдений Брока концепция, известная теперь как концепция доминантности полушарий, стала основной точкой зрения на взаимоотношения двух полушарий мозга.

В 1864 г. английский #евролог Джон Джексон писал: «Не так давно редко кто сомневался в том, что оба полушария одинаковы как в физическом, так и в функциональном плане, но теперь, когда благодаря исследованиям Дакса, Брока и других стало ясно, что повреждение одного полушария может вызвать у человека полную потерю речи, прежняя точка зрения стала несостоятельной».

Д. Джексон выдвинул идею о «ведущем» полушарии, которую можно рассматривать как предшественницу концепции доминант­ности полушарий. «Два полушария не могут просто дублировать друг друга, — писал он, — если повреждение только одного из них может привести к потере речи. Для этих процессов (речи), выше которых ничего нет, наверняка должна быть ведущая сторона». Далее Джексон сделал вывод о том, «что у большинства людей ведущей стороной мозга является левая сторона так называемой воли, и что правая сторона является автоматической».

К 1870 г. и другие исследователи стали понимать, что многие типы расстройств речи могут быть вызваны повреждением левого полушария. К. Вернике нашел, что больные при повреждении задней части височной доли левого полушария часто испытывали затруд­нения и в понимании речи.

У некоторых больных при повреждении левого, а не правого полушария обнаруживались затруднения при чтении и письме. Счи­талось также, что левое полушарие управляет и «целенаправлен­ными движениями».

Совокупность этих данных стала основой представления о вза­имоотношении двух полушарий. Одно полушарие (у праворуких обычно левое) рассматривалось как ведущее для речи и других высших функций, другое (правое), или «второстепенное», считали находящимся под контролем «доминантного» левого.

Выявленная первой речевая асимметрия полушарий мозга пред­определила представление об эквипотенциальности полушарий боль­шого мозга детей до появления речи. Считается, что асимметрия мозга формируется при созревании мозолистого тела.

Концепция доминантности полушарий, согласно которой во всех гностических и интеллектуальных функциях ведущим у «правшей» является левое полушарие, а правое оказывается «глухим и немым», просуществовала почти столетие. Однако постепенно накапливались свидетельства, что представление о правом полушарии как о вто­ростепенном, зависимом, не соответствует действительности. Так, у больных с нарушениями левого полушария мозга хуже выполня­ются тесты на восприятие форм и оценку пространственных взаи­мосвязей, чем у здоровых. Неврологически здоровые испытуемые, владеющие двумя языками (английским и идиш), лучше иденти­фицируют английские слова, предъявленные в правом поле зрения, а слова на идиш — в левом. Был сделан вывод, что такого рода асимметрия связана с навыками чтения: английские слова читаются слева направо, а слова идиш — справа налево.

Почти одновременно с распространением концепции доминант­ности полушарий стали появляться данные, указывающие на то, что правое, или второстепенное, полушарие также обладает своими особыми способностями. Так, Джексон выступил с утверждением о том, что в задних долях правого мозга локализована способность к формированию зрительных образов.

Повреждение левого полушария приводит, как правило, к низким показателям по тестам на вербальные способности. В то же время больные с повреждением правого полушария обычно плохо выпол­няли невербальные тесты, включавшие манипуляции с геометриче­скими фигурами, сборку головоломок, восполнение недостающих частей рисунков или фигур и другие задачи, связанные с оценкой формы, расстояния и пространственных отношений.

Обнаружено, что повреждение правого полушария часто сопро­вождалось глубокими нарушениями ориентации и сознания. Такие больные плохо ориентируются в пространстве, не в состоянии найти дорогу к дому, в котором прожили много лет. С повреждением правого полушария были связаны также определенные виды агнозий, т. е. нарушений в узнавании или восприятии знакомой информации, восприятии глубины и пространственных взаимоотношений. Одной из самых интересных форм агнозии является агнозия на лица. Больной с такой агнозией не способен узнать знакомого лица, а иногда вообще не может отличать людей друг от друга. Узнавание других ситуаций и объектов, например, может быть при этом не нарушено. Дополнительные сведения, указывающие на специали­зацию правого полушария, были получены при наблюдении за больными, страдающими тяжелыми нарушениями речи, у которых, однако, часто сохраняется способность к пению. Кроме того, в клинических сообщениях содержались данные о том, что повреж­дение правой половины мозга может привести к утрате музыкальных способностей, не затронув речевых. Это расстройство, называемое амузией, чаще всего отмечалось у профессиональных музыкантов, перенесших инсульт или другие повреждения мозга.

После того как нейрохирурги осуществили серию операций с комиссуротомией и были выполнены психологические исследования на этих больных, стало ясно, что правое полушарие обладает соб­ственными высшими гностическими функциями.

Существует представление, что  межполушарная асимметрия в решающей мере зависит от функционального уровня переработки информации. В этом случае решающее значение придается не ха­рактеру стимула, а особенностям гностической задачи, стоящей перед наблюдателем. Принято считать, что правое полушарие спе­циализировано в переработке информации на образном функцио­нальном уровне, левое — на категориальном. Применение такого подхода позволяет снять ряд трудноразрешимых противоречий. Так, преимущество левого полушария, обнаруженное при чтении нотных и пальцевых знаков, объясняется тем, что эти процессы протекают на категориальном уровне переработки информации. Сравнение слов без их лингвистического анализа успешнее осуществляется при их адресации правой гемисфере, поскольку для решения этих задач достаточна переработка информации на образном функциональном уровне.

Межполушарная асимметрия зависит от функционального уровня переработки информации: левое полушарие обладает способностью к переработке информации как на семантическом, так и на перцептивном функциональных уровнях, возможности правого полуша­рия ограничиваются перцептивным уровнем.

В случаях латерального предъявления информации можно вы­делить три способа межполушарных взаимодействий, проявляющих­ся в процессах зрительного опознания.

1. Параллельная деятельность. Каждое полушарие перерабаты­вает информацию с использованием присущих ему механизмов.

2. Избирательная деятельность. Информация перерабатывается в «компетентном» полушарии.

3. Совместная деятельность. Оба полушария участвуют в пере­работке информации, последовательно играя ведущую роль на тех или иных этапах этого процесса.

Основным фактором, определяющим участие того или иного полушария в процессах узнавания неполных изображений, является то, каких элементов лишено изображение, а именно какова степень значимости отсутствующих в изображении элементов. В случае, если детали изображения удалялись без учета степени их значи­мости, опознание в большей мере было затруднено у больных с поражениями структур правого полушария. Это дает основание счи­тать правое полушарие ведущим в опознании таких изображений. Если же из изображения удалялся относительно небольшой, но высокозначимый участок, то опознание нарушалось в первую очередь при поражении структур левого полушария, что свидетельствует о преимущественном участии левой гемисферы в опознании подобных изображений.

В правом полушарии осуществляется более полная оценка зри­тельных стимулов, тогда как в левом оценнваются наиболее суще­ственные, значимые их признаки.

Когда значительное число деталей изображения, подлежащего опознанию, удалено, вероятность того, что наиболее информативные, значимые его участки не подвергнутся искажению или удалению, невелика, а потому левополушарная стратегия опознания значи­тельно ограничена. В таких случаях более адекватной является стратегия, свойственная правому полушарию, основанная на ис­пользовании всей содержащейся в изображении информации.

Трудности в реализации левополушарной стратегии в этих ус­ловиях усугубляются еще и тем обстоятельством, что левое по­лушарие обладает недостаточными «способностями» к точной оценке отдельных элементов изображения. Об этом свидетельствуют также исследования, согласно которым оценка длины и ориентации линий, кривизны дуг, величины углов нарушается прежде всего при пора­жениях правого полушария.

Иная картина отмечается в случаях, когда большая часть изо­бражения удалена, но сохранен наиболее значимый, информативный его участок. В подобных ситуациях более адекватным является способ опознания, основанный на анализе наиболее значимых фраг­ментов изображения — стратегия, используемая левым полушарием.

В процессе узнавания неполных изображений участвуют струк­туры как правого, так и левого полушария, причем степень участия каждого из них зависит от особенностей предъявляемых изображе­ний, и в первую очередь от того, содержит ли изображение наиболее значимые информативные элементы. При наличии этих элементов преобладающая роль принадлежит левому полушарию; при их уда­лении преимущественную роль в процессе опознания играет правое полушарие.

 

Болезнь Альцгеймера: ген, от которого я без ума.

В начале XX века с помощью немецкого психиатра Алоиса Альцгеймера мир узнал о существовании новой нейродегенеративной болезни. И хотя долгое время исследователи не воспринимали генетическую предрасположенность в качестве важного фактора для развития болезни Альцгеймера, вскоре ситуация изменилась. Однако и сейчас о природе этого заболевания идут ожесточенные споры: кто же во всем виноват — β-амилоид или APOE4?

Однажды в 1991 году невролог Уоррен Стриттмэттер (Warren Strittmatter) попросил своего руководителя — директора Дьюковского университета Аллена Роузеса (Allen Roses) — взглянуть на результаты своего эксперимента. Стриттмэттер изучал бета-амилоид (Aβ) — основной компонент молекулярных сгустков, обнаруженных в мозге людей с деменцией альцгеймеровского типа*. Он искал в спинномозговом ликворе белки, связывающиеся с амилоидом, и в результате наткнулся на аполипопротеин Е (ApoE), который, вроде бы, не имел прямой связи с развитием болезни.

Профессор Роузес сразу понял, что его коллега нашел нечто важное. Двумя годами ранее ими было обнаружено, что экспрессия некоторых генов из хромосомы 19 способствует развитию деменции, а поскольку Роузес знал, что ген, кодирующий ApoE, также находится на этой хромосоме, его молниеносно осенила идея участия ApoE в развитии болезни Альцгеймера (БА).

В организме человека есть три варианта гена APOE, кодирующих изоформы белка Е2, Е3 и Е4, и Роузес решил выяснить их влияние на развитие болезни Альцгеймера. Для определения отдельных аллелей нужно было провести полимеразную цепную реакцию (ПЦР). Так как ученый имел весьма скромный опыт работы с ПЦР, он хотел привлечь в свою команду нейрофизиологов, но получил отказ: хотя они и были заняты охотой за генами, которые лежат в основе болезни Альцгеймера, АРОЕ показался им неподходящим кандидатом. Роузес вспоминает, как позже в лаборатории ходили разговоры: «…начальник совсем потерял голову от своих безумных идей».

Но Роузес не сдавался. Он попросил помощи у своей жены, генетика Энн Сондерс (Ann Saunders), которая использовала ПЦР в своих исследованиях. Она только что родила дочь и была в декретном отпуске, и потому они заключили соглашение. «Она сделала все эксперименты, пока я присматривал за ребенком», — говорит профессор. В течение трех недель супруги собрали данные, которые в дальнейшем легли в основу серии знаковых публикаций. Они выяснили, что аллель APOE4 способствует развитию БА.

Сегодня, двадцать лет спустя, APOE4 остается ведущим фактором риска для наиболее распространенной формы деменции. Наследование одной копии APOE4 вчетверо повышает риск возникновения заболевания, двух копий — в 12 раз (рис. 1). Однако данные Роузеса в основном не воспринимали всерьез или критиковали. Впоследствии, даже когда мнение об ApoE поменялось, большинство ученых все равно продолжали работать с β-амилоидом, как бы «зациклившись» на классике. Но некоторые лаборатории все равно исследовали ApoE, несмотря на равнодушие финансирующих учреждений и научного сообщества и на отсутствие ресурсов, необходимых для проведения масштабных экспериментов.

Долгое время было неизвестно, какие функции белок ApoE выполняет в головном мозге, и постепенно эта головоломка стала интересовать многих нейрофизиологов. Интерес к липопротеинам продолжал расти, — отчасти потому, что клинические испытания лекарств, нацеленных на β-амилоид, часто заканчивались неудачей. Многие исследователи начали скрупулезно изучать белок ApoE4 и, как следствие, привлекли внимание фармацевтических компаний. «Амилоидные подходы» постепенно перестали использовать, зато начали разрабатывать препараты, направленные на аполипопротеин.

«Несмотря на отсутствие уверенных доказательств, амилоидная гипотеза стала в свое время сильным научным постулатом», — говорит Завен Хачатурян, президент некоммерческой компании «Предотвратим Болезнь Альцгеймера» (Prevent Alzheimer’s Disease 2020) и бывший координатор деятельности, связанной с исследованием БА в Национальных институтах здоровья США. До недавнего времени, по его словам «никто не пытался задать фундаментальный вопрос — правильно ли мы определили основную предпосылку болезни?».

Жесткая конкуренция.

Существуют разные доводы относительно того, почему открытие Роузеса было проигнорировано. Многие сходятся во мнении, что генетик выбрал неудачное время для обнародования своих результатов. В 1991 году Джон Харди (John Hardy) и Дэвид Олсоп (David Allsop) предложили «гипотезу амилоидного каскада». Они утверждали, что болезнь Альцгеймера является результатом аномального накопления β-амилоидных бляшек в тканях мозга. Научное сообщество поддержало предложенную идею, которую вскоре начали активно финансировать.

Но Роузес не подписался под этой теорией: «…амилоиды являются одними из многих веществ, которые формируют бляшки; в конечном итоге они разрушают клетки и вызывают атрофию мозга. У меня и мысли не было, что это было причиной деменции». Говоря так, он, возможно, хотел скрыть возможную связь ApoE/Аβ, и случайно создал конкуренцию между двумя гипотезами за финансирование. К сожалению, Роузес так и не получил гранты для работы с ApoE.

Были и технические препятствия для изучения ApoE. Белок входит в состав различных липопротеинов плазмы крови и является довольно сложной фармакологической мишенью при работе с головным мозгом. ApoE имеет липофильную часть и поэтому при биохимическом анализе может агрегировать с другими молекулами. Работа с такими белками требует глубокого понимания биохимии липопротеинов и методик работы с ними.

Амилоид же, наоборот, был легкой мишенью. После двух десятилетий тщательных наблюдений был создан ряд лекарств, которые изменяют метаболизм Аβ, но они до сих пор не оправдали ожиданий. Из шести препаратов, проходивших клинические испытания на больных со II или III стадией заболевания в 2012 году, половина сразу же отпала из соображений безопасности или отсутствия эффективности. И эта ситуация происходит на фоне старения населения, шаткости системы здравоохранения и нехватки лекарств для болезни Альцгеймера. «Количество неудачных испытаний, направленных на лечение деменции Альцгеймера, резко возросло», — говорит Леннарт Мак (Lennart Mucke), директор Гладстонского института неврологических заболеваний (Калифорнийский университет, Сан-Франциско). — «Это действительно пошатнуло фармацевтическую индустрию».

Три оставшихся препарата, которые нацелены на β-амилоид, в настоящее время проходят испытания на больных, а также на людях с высоким риском БА, у которых еще не развились симптомы. Позитронно-эмиссионная томография показала, что мозг подопытных с высоким риском развития БА отличается от здорового мозга за десятилетия (!) до того, как начинает накапливаться β-амилоид или разрушаться нейроны. В результате исследований, которые будут проводиться в течение следующих шести лет, ученые поймут, способны ли данные лекарства отсрочить наступление заболевания или нет. Среди исследователей и представителей фармацевтической индустрии появилось ощущение, что это — последний шанс для амилоидной гипотезы. На фоне этих сомнений ApoE вновь оказался в центре внимания.

По словам Мака, если испытания закончатся неудачей, ученые будут отчитываться перед инвесторами, предоставляя все данные доклинических и ранних клинических испытаний. Он надеется, что исследователи АроЕ вскоре получат большое преимущество. Несмотря на препятствия в этой области, у ученых продолжает крепнуть подозрение, что именно ApoE4 является предпосылкой для возникновения болезни. Этот факт подтверждают группы Мака и Гольцмана (Holtzman) в опытах на трансгенных мышах, которые несут в себе изоформы ApoE человека.

Скорее всего, ApoE участвует в развитии БА двумя различными путями, один из которых — амилоид-зависимый. И у животных, и у человека ApoE4 способствует отложению Aβ в мозговом веществе, в то время как ApoE3 считается «нейтральной» изоформой, а ApoE2 — «защитной» формой, уменьшающей накопление бляшек. «Это достаточно убедительные данные», — говорит Хольцман.

Другой механизм не предусматривает взаимосвязи с амилоидом. Когда нейроны находятся в состоянии стресса, они экспрессируют ApoE для своего восстановления. «Плохая» форма — ApoE4, — как правило, разрушается на токсичные фрагменты, которые повреждают митохондрии и модифицируют цитоскелет.

Оценить вклад этих двух механизмов в риск развития болезни Альцгеймера крайне сложно, говорит Хольцман, но он и его коллеги считают, что трансформация вредоносной изоформы ApoE в «нейтральную» может стать перспективным подходом для лечения БА. В Гладстоне исследователи начали изучать этот вопрос, и уже найдены небольшие регуляторные молекулы, которые трансформируют ApoE4 в ApoE3-образный белок и тем самым снижают аномальную фрагментацию первого. В культуре клеток даже низкие концентрации этих молекул могут уменьшить разрушение митохондрий и дисфункцию нейронов. В настоящее время эти молекулы проходят испытания на животных, и если они в конечном счете окажутся безопасными и эффективными, врачи будут назначать их пациентам, предрасположенных к БА, так же, как статины — больным с высоким уровнем холестерина и с повышенным риском сердечно-сосудистых заболеваний.

Более чем достаточно.

Такие препараты могут быть эффективными и для лечения других болезней. «Митохондриальная гипотеза достаточно логично и лаконично объясняет, к чему приводит экспрессия ApoE4», — говорит Мак, — «не только в контексте болезни Альцгеймера, но, возможно, также и при других заболеваниях». Существует доказательство того, что появление этой изоформы — возможный фактор риска также при болезни Паркинсона и эпилепсии. Данный белок также связывают с развитием деструктивных процессов после черепно-мозговой травмы и ускоренным развитием ВИЧ-инфекции. Пятнадцать биотехнологических компаний уже сотрудничают с Гладстоном для разработки лекарственных веществ, действующих по схожему принципу.

Несмотря на отсутствие грантов на исследования ApoE, Роузес никогда не сдавался. Но через несколько лет, когда его группа обнаружила связь между ApoE и болезнью Альцгеймера, он устал от постоянного денежного противостояния и оставил науку. Проработав в фармацевтической индустрии десять лет, в течение которых он не переставал исследовать ApoE, в 2008 году он снова возвращается в Дьюковский университет.

В 2009 году его группа описала участок некодирующей ДНК с геном TOMM40, который располагается рядом с APOE на девятнадцатой хромосоме. Этот участок ДНК (сокращенно — 523) варьирует по длине и, в зависимости от этого, может определять уровень экспрессии генов TOMM40 и АРОЕ.

По словам Роузеса, это было важное открытие, так как белок, кодируемый геном TOMM40 — Tom40, — является необходимым для «здоровых» митохондрий. Tom40 образует канал во внешней митохондриальной мембране, через который импортируются белки, необходимые для нормального деления этой органеллы. «Мы знали о существовании такого механизма в течении 10 лет», — говорит ученый, — «но то, что он приводит к болезни Альцгеймера, мы и не подозревали».

Роузес продолжал утверждать, что участок 523 можно использовать для разработки терапии и более точного предсказания болезни. Подавляющее большинство людей рискует встретиться со своим Альцгеймером, если только проживет достаточно долго, а ведь носителями аллеля APOE4 являются только 25% населения. Значит, тест на носительство этого аллеля никогда не будет до конца точным предиктором. Но генотипирование по обоим генам — АРОЕ и TOMM40 — может существенно увеличить точность, говорит Роузес. В его лаборатории открыли, что APOE3 — наиболее частая изоформа — обычно наследуется вместе или с коротким, или с очень длинным участком 523. И у носителей двух аллелей APOE3 возраст наступления заболевания будет зависеть от конкретного варианта участка 523, наследуемого вместе с APOE.

Некоторым лабораториям удалось найти доказательства, подтверждающие гипотезу Роузеса, однако у других повторить исследования на TOMM40 так и не удалось, и возникли сомнения в реальности влияния этого гена на риск развития БА. Однако Роузес не сомневается в правильности своих гипотез и считает, что геномные исследования, не подтвердившие его результатов, обладали недостаточной силой для выявления сцепливания TOMM40 и болезни Альцгеймера.

Роузес надеется, что вскоре он сможет подкрепить свои результаты клиническими исследованиями, которые будут проводиться в основанной им компании Zinfandel Pharmaceuticals. Вместе с японской фармацевтической компанией Takeda Зинфандель в настоящее время финансирует фазу III клинических испытаний (под названием TOMMORROW), призванную проверить идеи Роузеса на деле. TOMMORROW должна оценить риски развития БА в зависимости от возраста пациента и вариантов APOE и TOMM40. Для запуска программы будут отобраны около 6000 здоровых пожилых людей, и исследования будут продолжаться около 5 лет.

Программа будет также исследовать возможность того, что пиоглитазон — препарат для лечения пациентов с сахарным диабетом 2 типа, — в малых дозах будет задерживать развитие БА у лиц, отнесенных к группе высокого риска развития болезни Альцгеймера. Проверка этой идеи вызвана тем, что опубликованы результаты опытов на животных и даже на людях, которые говорят о способности пиоглитазона предотвращать или уменьшить патологию и симптомы, связанные с болезнью Альцгеймера. Роузес думает, возможный механизм этого — стимуляция деления митохондрий.

Даже если получить мощное лекарство против болезни Альцгеймера так и не удастся, толк в этих испытаниях все равно будет: научившись задерживать развитие БА хотя бы на два года, можно уменьшить число больных в США через 50 лет на 2 млн. человек, что очень и очень неплохо. Кроме того, результаты этих испытаний заставят исследователей всего мира по-новому взглянуть на деменцию. Такое сложное расстройство, как болезнь Альцгеймера, нельзя изучать только с одной стороны, — пусть и включающей ApoE4 или еще что-нибудь. По-видимому, нейрофизиологи близки к тому, чтобы признать ограниченность своих прежних взглядов и частично пересмотреть их, направив исследования по новым дорожкам, в конце которых будет разгадка проблемы, лишающей нас ума. #medica_mente


Рисунок 1. Носители аллеля APOE4 более подвержены развитию болезни Альцгеймера по сравнению с теми, кто унаследовал две копии аллеля APOE3.

Рисунок 2. Две расходящиеся гипотезы о том, как АроЕ способствует болезни.