наука
Квазикристаллы предоставляют учёным возможность по-новому взглянуть на твёрдые вещества.
Иллюстрация Luca Bindi, Chaney Lin, Chi Ma, Paul J. Steinhardt.
Физики обнаружили невероятно редкий квазикристалл в куске метеорита, найденного в России. Такой случай стал всего лишь третьим, когда учёные нашли в природе новый необычный материал.
Само понятие квазикристалл («как будто кристалл») было введено в обращение в 80-х годах прошлого века. Оно обозначает минералы с необычной внутренней структурой. В ней наблюдаются не регулярно повторяющиеся группы атомов, как в большинстве классических кристаллов, а структуры из двух или трёх различных кластеров атомов.
В результате физики видят определённую упорядоченность, но она сильно отличается от классической кристаллической симметрии и может иметь, например, «невозможные» (для встречающихся на Земле кристаллов) двадцатигранники из атомов.
Обыкновенные кристаллы – будь-то снежинки, алмазы или пищевая соль – состоят из атомов, которые расположены в почти идеальной симметрии. Но ключевое слово – почти (дефекты всё же имеются).
Ещё один тип кристаллов — поликристаллы, включающие большинство металлов, камней и льда, имеют более случайную и непорядочную структуру. Самые же неупорядоченные внутри аморфные твёрдые тела – стекло и многие виды пластмасс.
Квазикристаллы, попадающие к нам из космоса, невероятно удивительны, поскольку очень редки. Их атомная структура настолько своеобразна, что учёные за десятилетия их изучения окрестили её «невозможной».
Новый образец квазикристалла был обнаружен командой исследователей под руководством геолога Луки Бинди (Luca Bindi) из Университета Флоренции. Учёные изучали крошечный кусок метеорита, который упал в районе села Хатырка (Анадырский район Чукотского автономного округа России) пять лет назад, и определили, что внутри него располагается квазикристалл шириной всего несколько микрометров.
«Невозможное» вещество стало третьим по счёту, обнаруженным в метеорите (первые два корреспонденты «Вести.Наука»описывали ранее). Такие данные указывают на то, что в мире могут существовать и другие квазикристаллы, возможно, с ещё более необычной структурой.
«Примечательно, что мы уже обнаружили три разных типа квазикристаллов в одном метеорите. И это один из новых химических составов, который никогда прежде не был обнаружен среди квазикристаллов», — говорит один из членов исследовательской группы Пол Стейнхардт (Paul Steinhardt) из Принстонского университета.
Причина, по которой квазикристаллы считают «невозможными» в том, что на протяжении почти двух веков идеальная симметрия в атомных структурах, как полагалась, выстраивается благодаря соблюдению очень строгих правил. Изучением этих природных законов занимается наука кристаллография.
Ещё до открытия квазикристаллов исследователи установили, что для появления структуры с повторяющимися и симметричными свойствами, он должен демонстрировать один из четырёх типов вращательной симметрии. Но квазикристаллы не подчиняются этому правилу, поскольку они имеют внутреннее строение с пятым типом вращательной симметрией.
При изучении состава нового квазикристалла оказалось, что он состоит из атомов алюминия, меди и железа. Его структура немного напоминает пятиугольный рисунок внешней оболочки футбольного мяча.
Исследователи впервые обнаружили именно такой состав в природе. Это говорит о том, что, вероятно, наука стоит лишь на пороге понимания этой причудливой формы материи.
Исследователи говорят, что хоть квазикристаллы и крайне редко встречают в природе, их достаточно легко создать искусственным путём – в лаборатории. Сегодня они всё чаще применяются в промышленности и при создании различных товаров – от сковородок до светодиодных фонарей.
Результаты исследования и описание нового типа квазикристалла опубликовано в научном издании Scientific Reports.
Добавим, что не так давно «Вести.Наука» также рассказывали об обычных минералах, которые по-настоящему удивляют исследователей: например, найденные в Сибири оказались природными аналогами металл-органических каркасов.
Кстати, специалисты очень любят не только находить, но и моделировать «невозможные» вещества и заодно приписывать им «невозможные» свойства. Так, виртуальные давление и температура превратили обычную поваренную соль в химически невозможные формы.
Источник
В поисках внеземного разума ученые часто получают обвинения в «углеродном шовинизме», поскольку ожидают, что другие жизнеформы во Вселенной будут состоять из тех же биохимических строительных блоков, что и мы, соответствующим образом выстраивая свои поиски. Но жизнь вполне может быть другой — и люди об этом задумываются — поэтому давайте изучим десять возможных биологических и небиологических систем, которые расширяют определение «жизни».
А вы прочитав, скажете, какая форма для вас под вопросом даже теоретически.
Метаногены
В 2005 году Хизер Смит из Международного космического университета в Страсбурге и Крис Маккей из Исследовательского центра Эймса в NASA подготовили документ, рассматривающий возможность существования жизни на базе метана, так называемых метаногенов. Такие формы жизни могли бы потреблять водород, ацетилен и этан, выдыхая метан вместо углекислого газа.
Это могло бы сделать возможными зоны обитаемости жизни в холодных мирах вроде луны Сатурна Титан. Подобно Земле, атмосфера Титана представлена по большей части азотом, но смешанным с метаном. Титан также единственное место в нашей Солнечной системе, кроме Земли, где присутствуют большие жидкие водоемы — озера и реки из этано-метановой смеси. (Подземные водоемы также присутствуют на Титане, его сестринской луне Энцелад, а также на спутнике Юпитера Европе). Жидкость считается необходимой для молекулярных взаимодействий органической жизни и, конечно, основное внимание будет сосредоточено на воде, но этан и метан также позволяют таким взаимодействиям осуществляться.
Миссия NASA и ESA «Кассини-Гюйгенс» в 2004 году наблюдала грязный мир с температурой -179 градусов по Цельсию, где вода была твердой как камень, а метан плыл по речным долинам и бассейнам в полярные озера. В 2015 году команда инженеров-химиков и астрономов Корнелльского университета разработала теоретическую клеточную мембрану из небольших органических соединений азота, которые могли бы функционировать в жидком метане Титана. Они назвали свою теоретическую клетку «азотосомой», что в буквальном переводе означает «азотное тело», и она обладала такой же стабильностью и гибкостью, что и земная липосома. Самым интересным молекулярным соединением была акрилонитриловая азотосома. Акрилонитрил, бесцветная и ядовитая органическая молекула, используется для акриловых красок, резины и термопластмассы на Земле; также его нашли в атмосфере Титана.
Последствия этих экспериментов для поисков внеземной жизни сложно переоценить. Жизнь не только потенциально могла развиться на Титане, но ее еще и можно обнаружить по водородным, ацетиленовым и этановым следам на поверхности. Планеты и луны, в атмосферах которых преобладает метан, могут быть не только вокруг подобных Солнцу звезд, но и вокруг красных карликов в более широкой «зоне Златовласки». Если NASA запустит Titan Mare Explorer в 2016 году, уже в 2023 году мы получим подробную информацию о возможной жизни на азоте.
Жизнь на основе кремния
Жизнь на основе кремния — это, пожалуй, самая распространенная форма альтернативной биохимии, любимой популярной наукой и фантастикой — вспомните хорта из «Звездного пути». Эта идея далеко не нова, ее корни уходят еще в размышления Герберта Уэллса в 1894 году: «Какое фантастическое воображение могло бы разыграться из такого предположения: представим кремниево-алюминиевые организмы — или, может, сразу кремниево-алюминиевых людей? — которые путешествуют через атмосферу из газообразной серы, положим так, по морям из жидкого железа температурой в несколько тысяч градусов или вроде того, чуть выше температуры доменной печи».
Кремний остается популярным именно потому, что очень похож на углерод и может образовывать четыре связи, подобно углероду, что открывает возможность создания биохимической системы полностью зависимой от кремния. Это самый распространенный элемент в земной коре, если не считать кислород. На Земле есть водоросли, которые включают кремний в свой процесс роста. Кремний играет вторую после углерода роль, поскольку тот может образовывать более стабильные и разнообразные комплексные структуры, необходимые для жизни. Углеродные молекулы включают кислород и азот, которые образуют невероятно крепкие связи. Сложные молекулы на основе кремния, к сожалению, имеют тенденцию распадаться. Кроме того, углерод чрезвычайно распространен во Вселенной и существует миллиарды лет.
Едва ли жизнь на основе кремния появится в окружении, подобном земному, поскольку большая часть свободного кремния будет заперта в вулканических и магматических породах из силикатных материалов. Предполагают, что в высокотемпературном окружении все может быть по-другому, но никаких доказательств пока не нашли. Экстремальный мир вроде Титана мог бы поддерживать жизнь на основе кремния, возможно, вкупе с метаногенами, так как молекулы кремния вроде силанов и полисиланов могут имитировать органическую химию Земли. Тем не менее на поверхности Титана преобладает углерод, тогда как большая часть кремния находится глубоко под поверхностью.
Астрохимик NASA Макс Бернштейн предположил, что жизнь на основе кремния могла бы существовать на очень горячей планете, с атмосферой богатой водородом и бедной кислородом, позволяя случиться комплексной силановой химии с обратными кремниевыми связями с селеном или теллуром, но такое, по мнению Бернштейна, маловероятно. На Земле такие организмы размножались бы очень медленно, а наши биохимии никак бы не мешали друг другу. Они, впрочем, могли бы медленно поедать наши города, но «к ним можно было бы применить отбойный молоток».
Другие биохимические варианты
В принципе, было довольно много предложений касательно жизненных систем, основанных на чем-то другом, помимо углерода. Подобно углероду и кремнию, бор тоже имеет тенденцию образовывать прочные ковалентные молекулярные соединения, образуя разные структурные варианты гидрида, в которых атомы бора связаны водородными мостиками. Как и углерод, бор может связываться с азотом, образуя соединения, по химическим и физическим свойства подобным алканам, простейшим органическим соединения. Основная проблема с жизнью на основе бора связана с тем, что это довольно редкий элемент. Жизнь на основе бора будет наиболее целесообразна в среде, температура которой достаточно низка для жидкого аммиака, тогда химические реакции будут протекать более контролируемо.
Другая возможная форма жизни, которая привлекла определенное внимание, это жизнь на основе мышьяка. Вся жизнь на Земле состоит из углерода, водорода, кислорода, фосфора и серы, но в 2010 году NASA объявило, что нашло бактерию GFAJ-1, которая могла включать мышьяк вместо фосфора в клеточную структуру без всяких последствий для себя. GFAJ-1 живет в богатых мышьяков водах озера Моно в Калифорнии. Мышьяк ядовит для любого живого существа на планете, кроме нескольких микроорганизмов, которые нормально его переносят или дышат им. GFAJ-1 стала первым случаем включения организмом этого элемента в качестве биологического строительного блока. Независимые эксперты немного разбавили это заявление, когда не нашли никаких свидетельств включения мышьяка в ДНК или хотя бы каких-нибудь арсенатов. Тем не менее разгорелся интерес к возможной биохимии на основе мышьяка.
В качестве возможной альтернативы воде для строительства форм жизни выдвигался и аммиак. Ученые предположили существование биохимии на основе азотно-водородных соединений, которые используют аммиак в качестве растворителя; он мог бы использоваться для создания протеинов, нуклеиновых кислот и полипептидов. Любые формы жизни на основе аммиака должны существовать при низких температурах, при которых аммиак принимает жидкую форму. Твердый аммиак плотнее жидкого аммиака, поэтому нет никакого способа остановить его замерзание при похолодании. Для одноклеточных организмов это не составило бы проблемы, но вызвало бы хаос для многоклеточных. Тем не менее существует возможность существования одноклеточных аммиачных организмов на холодных планетах Солнечной системы, а также на газовых гигантах вроде Юпитера.
Сера, как полагают, послужила основой для начала метаболизма на Земле, и известные организмы, в метаболизм которых включена сера вместо кислорода, существуют в экстремальных условиях на Земле. Возможно, в другом мире формы жизни на основе серы могли бы получить эволюционное преимущество. Некоторые считают, что азот и фосфор могли бы также занять место углерода при довольно специфических условиях.
Меметическая жизнь
Ричард Докинз считает, что основной принцип жизни звучит так: «Вся жизнь развивается, благодаря механизмам выживания воспроизводящихся существ». Жизнь должна быть способна воспроизводиться (с некоторыми допущениями) и пребывать в среде, где будут возможны естественный отбор и эволюция. В своей книге «Эгоистичный ген» Докинз отметил, что понятия и идеи вырабатываются в мозгу и распространяются среди людей в процессе общения. Во многом это напоминает поведение и адаптацию генов, поэтому он называет их «мемами». Некоторые сравнивают песни, шутки и ритуалы человеческого общества с первыми стадиями органической жизни — свободными радикалами, плавающими в древних морях Земли. Творения разума воспроизводятся, эволюционируют и борются за выживание в царстве идей.
Подобные мемы существовали до человечества, в социальных призывах птиц и усвоенном поведении приматов. Когда человечество стало способно абстрактно мыслить, мемы получили дальнейшее развитие, управляя племенными отношениями и формируя основу для первых традиций, культуры и религии. Изобретение письма еще больше подтолкнуло развитие мемов, поскольку они смогли распространяться в пространстве и времени, передавая меметичную информацию подобно тому, как гены передают биологическую. Для некоторых это чистая аналогия, но другие считают, что мемы представляют уникальную, хотя немного рудиментарную и ограниченную форму жизни.
Некоторые пошли еще дальше. Георг ван Дрим разработал теорию «симбиосизма», которая подразумевает, что языки — это сами по себе формы жизни. Старые лингвистические теории считали язык чем-то вроде паразита, но ван Дрим полагает, что мы живем в сотрудничестве с меметическими сущностями, населяющими наш мозг. Мы живем в симбиотических отношениях с языковыми организмами: без нас они не могут существовать, а без них мы ничем не отличаемся от обезьян. Он считает, что иллюзия сознания и свободной воли вылилась из взаимодействия животных инстинктов, голода и похоти человека-носителя и лингвистического симбионта, воспроизводящегося с помощью идей и смыслов.
Синтетическая жизнь на основе XNA
Жизнь на Земле основана на двух переносящих информацию молекулах, ДНК и РНК, и долгое время ученые размышляли, можно ли создать другие похожие молекулы. Хотя любой полимер может хранить информацию, РНК и ДНК отображают наследственность, кодирование и передачу генетической информации и способны адаптироваться с течением времени в процессе эволюции. ДНК и РНК — это цепи молекул-нуклеотидов, состоящих из трех химических компонентов — фосфата, пятиуглеродной сахарной группы (дезоксирибоза в ДНК или рибоза в РНК) и одного из пяти стандартных оснований (аденин, гуанин, цитозин, тимин или урацил).
В 2012 году группа ученых из Англии, Бельгии и Дании первой в мире разработала ксенонуклеиновую кислоту (КНК, XNA), синтетические нуклеотиды, функционально и структурно напоминающие ДНК и РНК. Они были разработаны путем замены сахарных групп дезоксирибозы и рибозы различными субститутами. Такие молекулы делали и раньше, но впервые в истории они были способны воспроизводиться и эволюционировать. В ДНК и РНК репликация происходит с помощью молекул полимеразы, которые могут читать, транскибировать и обратно транскрибировать нормальные последовательности нуклеиновых кислот. Группа разработала синтетические полимеразы, которые создали шесть новых генетических систем: HNA, CeNA, LNA, ANA, FANA и TNA.
Одна из новых генетических систем, HNA, или гекситонуклеиновая кислота, была достаточно надежной, чтобы хранить нужное количество генетической информации, которая может послужить в качестве основы для биологических систем. Другая, треозонуклеиновая кислота, или TNA, оказалась потенциальным кандидатом на таинственную первичную биохимию, царившую на рассвете жизни.
Есть масса потенциальных применений этих достижений. Дальнейшие исследования могут помочь в разработке лучших моделей появления жизни на Земле и будут иметь последствия для биологических измышлений. XNA может получить терапевтическое применение, ведь можно создать нуклеиновые кислоты для лечения и связи с конкретными молекулярными целями, которые не будут портиться так быстро, как ДНК или РНК. Они даже могут лечь в основу молекулярных машин или вообще искусственной формы жизни.
Но прежде чем это станет возможно, должны быть разработаны другие энзимы, совместимые с одной из XNA. Некоторые из них уже разработали в Великобритании в конце 2014 года. Есть также возможность, что XNA может причинять вред РНК/ДНК-организмам, поэтому безопасность должна быть на первом месте.
Хромодинамика, слабое ядерное взаимодействие и гравитационная жизнь
В 1979 году ученый и нанотехнолог Роберт Фрейтас-младший предположил возможную небиологическую жизнь. Он заявил, что возможный метаболизм живых систем основан на четырех фундаментальных силах — электромагнетизме, сильном ядерном взаимодействии (или квантовой хромодинамике), слабом ядерном взаимодействии и гравитации. Электромагнитная жизнь — это стандартная биологическая жизнь, которую мы имеем на Земле.
Хромодинамическая жизнь могла бы быть основана на сильном ядерном взаимодействии, которое считается сильнейшим из фундаментальных сил, но только на чрезвычайно коротких расстояниях. Фрейтас предположил, что такая среда может быть возможна на нейтронной звезде, тяжелом вращающемся объекте 10-20 километров в диаметре с массой звезды. С невероятной плотностью, мощнейшим магнитным полем и гравитацией в 100 миллиардов раз сильнее, чем на Земле, у такой звезды было бы ядро с 3-километровой коркой кристаллического железа. Под ней было бы море с невероятно горячими нейтронами, различными ядерными частицами, протонами и ядрами атомов и возможные богатые нейтронами «макроядра». Эти макроядра в теории могли бы сформировать крупные сверхъядра, аналогичные органическим молекулам, нейтроны выступали бы эквивалентом воды в причудливой псевдобиологической системе.
Фрейтас видел формы жизни на базе слабого ядерного взаимодействия как маловероятные, поскольку слабые силы действуют лишь в субъядерном диапазоне и не особенно сильны. Как часто показывает бета-радиоактивный распад и свободный распад нейтронов, формы жизни слабого взаимодействия могли бы существовать при тщательном контроле слабых взаимодействий в своей среде. Фрейтас представил существ, состоящих из атомов с избыточными нейтронами, которые становятся радиоактивными, когда умирают. Он также предположил, что есть регионы Вселенной, где слабая ядерная сила сильнее, а, значит, шансы на появление такой жизни выше.
Гравитационные существа тоже могут существовать, поскольку гравитация является самой распространенной и эффективной фундаментальной силой во Вселенной. Такие существа могли бы получать энергию из самой гравитации, получая неограниченное питание из столкновений черных дыр, галактик, других небесных объектов; существа поменьше — из вращения планет; самые маленькие — из энергии водопадов, ветра, приливов и океанических течений, возможно, землетрясений.
Формы жизни из пыли и плазмы
Органическая жизнь на Земле основана на молекулах с соединениями углерода, и мы уже выяснили возможные соединения для альтернативных форм. Но в 2007 году международная группа ученых во главе с В. Н. Цытовичем из Института общей физики Российской академии наук документально подтвердила, что при нужных условиях частицы неорганической пыли могут собираться в спиральные структуры, которые затем будут взаимодействовать друг с другом в манере, присущей для органической химии. Это поведение также рождается в состоянии плазмы, четвертом состоянии вещества после твердого, жидкого и газообразного, когда электроны отрываются от атомов, оставляя массу заряженных частиц.
Группа Цытовича обнаружила, что когда электронные заряды отделяются и плазма поляризуется, частицы в плазме самоорганизуются в форму спиральных структур вроде штопора, электрически заряженных, и притягиваются друг к другу. Они также могут делиться, образуя копии оригинальных структур, подобно ДНК, и индуцировать заряды в своих соседях. По мнению Цытовича, «эти сложные, самоорганизующиеся плазменные структуры отвечают всем необходимым требованиям, чтобы считать их кандидатами в неорганическую живую материю. Они автономны, они воспроизводятся и они эволюционируют».
Некоторые скептики считают, что такие заявления являются больше попыткой привлечь внимание, нежели серьезными научными заявлениями. Хотя спиральные структуры в плазме могут напоминать ДНК, сходство в форме необязательно предполагает сходство в функциях. Более того, тот факт, что спирали воспроизводятся, не означает потенциал жизни; облака тоже так делают. Что еще больше удручает, большая часть исследований была проведена на компьютерных моделях.
Один из участников эксперимента также собщил, что хотя результаты действительно напоминали жизнь, в конце концов, они были «просто особой формой плазменного кристалла». И все же, если неорганические частицы в плазме могут перерасти в самовоспроизводящиеся, развивающиеся формы жизни, они могут быть наиболее распространенной формой жизни во Вселенной, благодаря вездесущей плазме и межзвездным облакам пыли по всему космосу.
Неорганические химические клетки
Профессор Ли Кронин, химик Колледжа науки и инженерии при Университете Глазго, мечтает создать живые клетки из металла. Он использует полиоксометаллаты, ряд атомов металла, связанных с кислородом и фосфором, чтобы создать похожие на клетки пузырьки, которые он называет «неорганическими химическими клетками», или iCHELLs (этот акроним можно перевести как «неохлетки»).
Группа Кронина начала с создания солей из отрицательно заряженных ионов крупных оксидов металла, связанных с небольшим положительно заряженным ионом вроде водорода или натрия. Раствор из этих солей затем впрыскивается в другой солевой раствор, полный больших положительно заряженных органических ионов, связанных с небольшими отрицательно заряженными. Две соли встречаются и обмениваются частями, так что крупные оксиды металла становятся партнерами с крупными органическими ионами, образуя что-то вроде пузыря, который непроницаем для воды. Изменяя костяк оксида металла, можно добиться того, что пузыри приобретут свойства биологических клеточных мембран, которые выборочно пропускают и выпускают химические вещества из клетки, что потенциально может позволить протеканию того же типа контролируемых химических реакций, который происходит в живых клетках.
Группа ученых также сделала пузыри в пузырях, имитируя внутренние структуры биологических клеток, и добилась прогресса в создании искусственной формы фотосинтеза, которая потенциально может быть использована для создания искусственных клеток растений. Другие синтетические биологи отмечают, что такие клетки могут никогда не стать живыми, пока не получат систему репликации и эволюции вроде ДНК. Кронин не теряет надежду на то, что дальнейшее развитие принесет свои плоды. Среди возможных применений этой технологии есть также разработка материалов для солнечных топливных устройств и, конечно, медицина.
По словам Кронина, «основная цель — это создать комплексные химические клетки с живыми свойствами, которые могут помочь нам понять развитие жизни и пойти этим же путем, чтобы привнести новые технологии на основе эволюции в материальный мир — своего рода неорганические живые технологии».
Зонды фон Неймана
Искусственная жизнь на основе машин — это довольно распространенная идея, чуть ли не банальная, поэтому давайте просто рассмотрим зонды фон Неймана, чтобы не обходить ее стороной. Впервые их придумал в середине 20 века венгерский математик и футуролог Джон фон Нейман, который считал, что для того, чтобы воспроизводить функции человеческого мозга, машина должна обладать механизмами самоуправления и самовосстановления. Так он пришел к идее создания самовоспроизводящихся машин, в основе которых работают наблюдения за возрастающей сложностью жизни в процессе воспроизводства. Он считал, что такие машины могут стать своего рода универсальным конструктором, который мог бы позволить не только создавать полные реплики себя самого, но и улучшать или изменять версии, тем самым осуществляя эволюцию и наращивая сложность со временем.
Другие футурологи вроде Фримена Дайсона и Эрика Дрекслера довольно быстро применили эти идеи к области космических исследований и создали зонд фон Неймана. Отправка самовоспроизводящегося робота в космос может быть самым эффективным способом колонизации галактики, ведь так можно захватить весь Млечный Путь меньше чем за один миллион лет, даже будучи ограниченными скоростью света.
Как объяснил Мичио Каку:
«Зонд фон Неймана — это робот, предназначенный для достижения далеких звездных систем и создания фабрик, которые будут строить копии самих себя тысячами. Мертвая луна, даже не планета, может стать идеальным пунктом назначения для зондов фон Неймана, поскольку там будет проще садиться и взлетать с этих лун, а также потому что на лунах нет эрозии. Зонды могли бы жить за счет земли, добывая железо, никель и другое сырье для строительства роботизированных фабрик. Они бы создали тысячи копий самих себя, которые затем разошлись бы в поисках других звездных систем».
За долгие годы были придуманы различные версии базовой идеи зонда фон Неймана, включая зонды освоения и разведки для тихого исследования и наблюдения внеземных цивилизаций; зондов связи, разбросанных по всему космосу, чтобы лучше улавливать радиосигналы инопланетян; рабочие зонды для строительства сверхмассивных космических структур; зонды-колонизаторы, которые будут покорять другие миры. Могут быть даже путеводные зонды, которые будут выводить юные цивилизации в космос. Увы, могут быть и зонды-берсеркеры, задачей которых будет уничтожение следов любой органики в космосе, за чем последует строительство полицейских зондов, которые будут эти атаки отражать. Учитывая то, что зонды фон Неймана могут стать своего рода космическим вирусом, нам стоит осторожно подходить к их разработке.
Гипотеза Геи
В 1975 году Джеймс Лавлок и Сидни Эптон совместно написали статью для New Scientist под названием «В поисках Геи». Придерживаясь традиционной точки зрения о том, что жизнь зародилась на Земле и процветала благодаря нужным материальным условиям, Лавлок и Эптон предположили, что жизнь таким образом взяла на себя активную роль в поддержании и определении условий для своего выживания. Они предположили, что вся живая материя на Земле, в воздухе, океанах и на поверхности является частью единой системы, ведущей себя подобно сверхорганизму, который способен настраивать температуру на поверхности и состав атмосферы нужным для выживания образом. Они назвали такую систему Геей, в честь греческой богини земли. Она существует, чтобы поддерживать гомеостаз, благодаря которому на земле может существовать биосфера.
Лавлок работал над гипотезой Геи с середине 60-х годов. Основная идея в том, что биосфера Земли имеет ряд природных циклов, и когда один идет наперекосяк, другие компенсируют его так, чтобы поддерживать жизненную способность. Это могло бы объяснить, почему атмосфера не состоит целиком из диоксида углерода или почему моря не слишком соленые. Хотя вулканические извержения сделали раннюю атмосферу состоящей преимущественно из диоксида углерода, появились вырабатывающие азот бактерии и растения, производящие кислород в процессе фотосинтеза. Спустя миллионы лет атмосфера изменилась в нашу пользу. Хотя реки переносят соль в океаны из пород, соленость океанов остается стабильной на 3,4%, поскольку соль просачивается через трещины в океаническом дне. Это не сознательные процессы, но результат обратной связи, которая удерживает планеты в пригодном для обитания равновесии.
Другие свидетельства включают то, что если бы не биотическая активность, метан и водород исчезли бы из атмосферы всего за несколько десятилетий. Кроме того, несмотря на увеличение температуры Солнца на 30% за последние 3,5 миллиарда лет, средняя глобальная температура пошатнулась всего на 5 градусов по Цельсию, благодаря регуляторному механизму, который удаляет диоксид углерода из атмосферы и запирает его в окаменелой органической материи.
Первоначально идеи Лавлока были встречены насмешками и обвинениями. Со временем, однако, гипотеза Геи повлияла на идеи о биосфере Земли, помогла сформировать цельное их восприятие в ученом мире. Сегодня гипотеза Геи скорее уважается, нежели принимается учеными. Она является скорее положительной культурной рамкой, в которой должны проводиться научные исследования на тему Земли как глобальной экосистемы.
Палеонтолог Питер Уорд разработал конкурентную гипотезу Медеи, названную в честь матери, которая убила своих детей, в греческой мифологии, основная идея которой сводится к тому, что жизнь по своей сути стремится к саморазрушению и самоубийству. Он указывает на то, что исторически большинство массовых вымираний были вызваны формами жизни, например, микроорганизмами или гоминидами в штанах, которые наносят тяжелые увечья атмосфере Земли.
источник
Раки-богомолы могут расколоть одним ударом раковину улитки, их удар по жертве столь же быстр и мощен, как выстрел пулей калибра .22. Эти существа могут прятаться в песке, поджидая, пока рядом не проплывет рыба. Как только несчастное создание подойдет поближе, рак прыгает на нее, пронзает своими ножками, которые больше похоже на зазубренные лезвия, и утаскивает жертву в песок.
Но помимо прекрасных охотничьих навыков рак-богомол еще обладает уникальным зрением. В его глазах содержится 6 псевдозрачков и 12 цветовых рецепторов. Просто сравните это с нашими скромными показателями: 2 зрачка и всего три цветовых рецептора. Таким образом, наше зрение биполярно, а его — гексаполярно. Но вдобавок рак-богомол еще видит поляризацию света. Совершенно невидимая для человеческого глаза, она тем не менее видна многим подводным животным.
Но раки-богомолы отличились и здесь. Они могут видеть особый вид поляризации, под названием циркулярная поляризация. С помощью специальных пластин на ножках они отражают свет так, что его волна изменяется, закручиваясь. Ученые выяснили, что некоторые виды раков-богомолов используют ее для общения друг с другом, например, привлекают самок или сразу дают знак другим, что территория занята, тем самым избегая драк за нее.
Их глаза настолько уникальны, что только благодаря этому у них есть целый секретный язык, который ученые сейчас пытаются использовать для распознавания рака.
источник
Когда мы слышим, что археологи обнаружили тот или иной артефакт, которому, например, 5300 лет, то принимаем это как должное, хотя можем и не знать, как ученые так точно определяют возраст находки. Есть разные методы, о пяти мы и расскажем.
Стратиграфия
Самым классическим археологическим методом датировки считается стратиграфия. В основном она применяется в случае раскопок поселений, которые существовали продолжительный период времени.
Дело в том, что в местах, где живут люди, слой почвы постоянно повышается – в связи со стройками, земляными работами и прочими элементами человеческой деятельности. Это наслоение и называется культурным слоем, которое похоже на слоенный пирог. И каждый слой в нем – отражение определенного периода жизни города.
В нем сохраняются древние сооружения, строительный, хозяйственный мусор, следы пожаров. Более того, земля может рассказать нам о судьбе конкретной семьи. При раскопках древнерусских городищ часто можно обнаружить сгоревший дом с его хозяевами, не успевшими вовремя спастись.
Как же происходит сама датировка? По сути, путем сравнения со слоями других памятников, про которые больше известно, скажем из письменных источников, по найденным находкам, которые характерны для определенного периода, а также по структуре и цвету и составу почвы.
Например, в городах Волжской Болгарии, переживших монголо-татарское нашествие, домонгольский слой по составу, а часто и по цвету отличен от более позднего слоя. Кроме того, стратиграфия позволяет установить хронологическую последовательность, поскольку в непотревоженном культурном слое нижние слои древнее верхних.
Поэтому так важен именно нетронутый культурный слой. Тот, что был разрушен при строительстве или черными копателями не только не годен к стратиграфическому анализу, но и вообще не сможет рассказать об истории этого места, поскольку все культурные слои и, соответственно, исторические периоды будут перемешаны. К сожалению, разрушенные культурные слои – довольно частая картина.
Сравнительный метод
Сравнительный метод позволяет определить и относительную, и в некоторых случаях, точную датировку. Он является сугубо историческим: слои датируются по древним надписям на находках, монетам.
Для данного метода характерно сопоставление археологических данных с письменными источниками, описывающими жизнь на изучаемой территории или быт определенного народа. Разумеется, если они есть. Сравнительный метод практически бесполезен для датировки дописьменных культур, особенно в случае отсутствия рядом с ними древних письменных цивилизаций.
В эту же категорию можно отнести и способ датировки по художественным особенностям изделий и изображений. Например, для отдельных периодов и культур существовали свои творческие особенности, будь то особый узор, техника изготовления и прочее. При нахождении общих правил распознавания таких стилистических признаков, датировать предметы можно достаточно точно.
Типологический
Но чтобы датировать слой с помощью художественных особенностей, нужно для начала датировать сами художественные особенности. Тут на помощь приходит метод с рутинным названием «типологический», вперемешку со стратиграфией. Он основывается на объединении находок в типологические ряды – серии вещей, имеющих повторяющиеся или прогрессирующие признаки. Для установления даты такой серии необходимо иметь несколько археологических объектов, содержащих вещи этого типа. Отрезок времени, ограниченный крайними датами в этой серии, и будет определять дату типа. При этом достоверность датировки зависит от количества этих археологических объектов. Если их достаточно, то правильность датировки может быть проверена по характеру распределения дат объектов. При статистически достаточном количестве однотипных вещей можно с некоторой вероятностью вычислить интервал, в течение которого данный тип находился в обиходе.
Радиоуглеродный метод
Для абсолютной датировки археологами применяется радиоуглеродный анализ, который отталкивается от содержания в органических предметах радиоактивного углерода C-14.
Все живые организмы, которые усваивают обычный углерод из атмосферы, вместе с ним вбирают и радиоактивный углерод С-14. Поэтому, прижизненная концентрация радиоуглерода практически одинакова, как у деревьев и растений, так в человеческих и животных телах. Но после смерти в органике начинается процесс разрушения усвоенного радиоуглерода. Если сравнить дерево, срубленное 5000 лет назад, с современным деревом, то окажется, что в старой древесине содержание изотопа С-14 ровно в два раза меньше. Таким образом, радиоуглеродным методом можно определять возраст углеродосодержащего вещества до 70-100 тысяч лет, но не больше. Для более «древних» находок, скажем, для датировки костей динозавров, применяются другие изотопы, например, бериллий-10.
Несмотря на то, что радиоуглеродный анализ позволяет с точностью определить время смерти органики, у него есть свои минусы и их немало. Первый недостаток заключается в том, что он датирует только органическое вещество, а не время создание из него исторического артефакта. Например, в случае икон, он может датировать материал, из которого она сделана, но для изготовления качественной подделки можно подобрать и старинный материал. Грубо говоря, возраст доски еще не говорит о возрасте картины.
Другой недостаток данного метода в том, что результат может быть искажен, если образец был сильно загрязнен углеродосодержащими материалами более позднего периода. В этом случае, определение возраста может дать огромные ошибки. Погрешность метода в настоящее время находится в пределах 70-300 лет, на первых порах исследования она была намного больше.
Именно на вероятность подобной ошибки ссылаются сторонники подлинности знаменитой Туринской плащаницы, которую также подвергли радиоуглеродному анализу. В результате она была датирована интервалом от 1260 до 1390 года. Скептики сразу объявили ее средневековой подделкой, на что ее защитники выдвинули предположение о загрязнении плащаницы углеродом при пожаре XVI века. Кстати, для проверки верности результатов одновременно с плащаницей анализировали три другие образца тканей: плащ Людовика IX из XIII века, саван из египетского погребения, сотканный около 1100 года, и ткань, укутывавшая египетскую мумию, датируемую приблизительно 200 годом. Во всех трех случаях лабораторные результаты совпали с исходными данными.
Палеомагнитный метод
Одной из самых распространенных находок в археологии большинства периодов является керамика. Сегодня ее можно датировать с точностью до десятков лет, определив время обжига, последнего растапливания печи и так далее. Это возможно благодаря палеомагнитному методу, основанному на изменчивости магнитного поля Земли и на свойстве материалов намагничиваться при высоких температурах под его воздействием. Так, при переходе железосодержащих веществ из жидкого состояния в твердое, в образующихся минералах сохраняется так называемая остаточная намагниченность. При этом ее вектор будет совпадать с ориентацией магнитного поля Земли в момент образования минерала. Полученные сведения о состоянии магнитного поля земли на момент обжига соотносят с геохронологическими шкалами, составленными при помощи палеонтологических, радиометрических и других данных, и получают результат.
Основной минус палеомагнитного метода в том, что для точных данных, нужно, чтобы объект исследования после обжига не перемещался, а это условие выполнимо лишь в редких случаях.
источник
Опубликованный в 1978 году фантастический роман «Сердцебиение» Юджина Донга повествует о вживлении искусственного сердца, работающего на радиоактивном плутонии. Эксперимент удался, операции по имплантации продолжились. Но самого первого пациента похитил террорист, угрожая распылить в воздухе плутоний из его сердца и погубить тысячи человек.
В США с 1967 по 1977 год реализовывались две исследовательские программы по созданию полностью автономного механического сердца с атомным источником энергии. Ученые до сих пор утверждают, что технологически проект был вполне осуществим, однако помешали социальные и политические разногласия. Роман «Сердцебиение» сыграл в этом не последнюю роль.
Разработку искусственного органа правительство США поручило Национальному институту сердца и Агентству по атомной энергетике. Предполагалось сформировать общий проект, однако этого сделать не удалось. Национальный институт сердца планировал создать атомное сердце в два этапа: сначала — механический насос без источника питания, затем — с автономным атомным источником питания.
Агентство по атомной энергетике намеревалось сразу изготовить орган с плутонием. Разногласия между организациями были политического характера. Институт действовал в интересах администрации президента Линдона Джонсона, обещавшего американцам действующую систему искусственного сердца. Автономности можно было добиться позднее. В агентстве с этим подходом не соглашались.
Контракт на разработку искусственного сердца в 1971 году от агентства получили компании Westinghouse Electric и Philips. Первая осуществляла общее руководство проектом и создавала источник энергии, вторая занималась силовым агрегатом. В качестве основы для него выбрали двигатель Стирлинга. Это решение обусловливалось высоким КПД, подходящими размерами и низкими энергозатратами двигателя. Прототип искусственного сердца состоял из двух подсистем: с тепловым конвертером и насосом. Тепловой преобразователь питался от источника, представляющего собой РИТЭГ с 60 граммами плутония-238. В результате его распада выделялось тепло, нагревавшее газ, который от этого расширялся и толкал поршень насоса, перекачивавший кровь через сердце.
Распад плутония и продуктов реакции приводил к образованию альфа-частиц (ядер гелия). Для защиты от радиации и избыточного тепловыделения источник помещался в трехслойную металлическую оболочку из платины, родия и тантала. Внутренние стенки искусственного сердца содержали прокладки из каучукового пластика с текстурой из полиэфирных волокон. Это позволяло снизить свертываемость крови и риск эмболии или инсульта. В качестве источника радиоизотопов компания Philips также рассматривала прометий-147 и тулий-171, но выбрала плутоний-238 из-за его доступности, большого периода полураспада (87,7 года), низкой скорости эмиссии и высокой мощности (газовая машина Philips развивала 33 ватта).
Westinghouse Electric и Philips привлекли к сотрудничеству изобретателя аппарата искусственной почки Вилли Колффа. С его помощью были созданы биоматериалы насоса и гибкий приводной вал, соединяющий насос с преобразователем тепла. Насос состоял из двух желудочков, толкающих кровь в сторону выталкивающихся пластин при сжатии двух диафрагм. Для этого частота двигателя Стирлинга компании Philips была снижена с 1,8 тысячи до 120 оборотов в минуту.
Проект Агентства по атомной энергетике
Изображение: Special Collections, J. Willard Marriott Library, University of Utah
Механический насос предполагалось имплантировать целиком вместо больного органа, а источник питания — разместить в брюшной полости. К 1972 году агентству по атомной энергетике и компании Westinghouse Electric еще не удалось создать достаточно компактные тепловой преобразователь и механический насос. Тем не менее достигнутые успехи воодушевляли, и на 1974 год были запланированы первые испытания на животных. Однако обогнали конкуренты из Национального института сердца.
В феврале 1972 года кардиохирург Джон Норман имплантировал элемент механического сердца больному сердечной недостаточностью теленку с целью временного поддержания его жизнедеятельности. Эта новость широко обсуждалась в США. Всего с 1972 по 1974 год Норман и его коллеги выполнили эксперименты с 15 телятами. Животные выживали в течение нескольких часов, а не дней, как планировалось, и погибали в результате кровоизлияний (из-за разрывов сердца) или повреждений внутренних органов. В дальнейшем Норман продолжил эксперименты с искусственным сердцем, но отказался от радиоактивных изотопов в качестве источников питания.
Доктор Джон Норман (справа) с прототипом искусственного сердца
Фото: Texas Heart Institute
Искусственное сердце Норманна состояло, как и у Westinghouse Electric, из двух частей: теплового преобразователя и механического насоса. Насос, изготовленный из пластика и покрытый структурированным силиконом, присоединялся к верхней части левого желудочка и отвечал за доступ крови в нисходящую грудную аорту. Работу насоса обеспечивало трехкилограммовое устройство, в том числе 0,7-килограммовый двигатель, питающийся 120-граммовым источником с плутонием-238. Все устройство должно было размещаться в брюшной полости животного. Двигатель с рабочей температурой 480 градусов Цельсия преобразовывал энергию радиоактивного распада в 52 ватта гидравлической мощности насоса.
В отличие от двигателя Стирлинга, в котором рабочее тело (воздух) никогда не изменяло свою фазу (оставалось в газообразном состоянии), в агрегате, разработанном компанией Thermo Electron Engineering, каждый цикл работы двигателя (сжатия и расширения) сопровождался испарением и конденсацией рабочего тела. По сути этот агрегат представлял собой обычный паровой двигатель. Несмотря на громоздкость конструкции, ее сторонники утверждали, что отсутствие в ней каких-либо клапанов и большого количества движущихся частей обеспечивает высокую надежность.
Импланты в теленке (согласно проекту Нормана)
Изображение: AIP Publishing LLC
Отчет, опубликованный Норманном и представленный Конгрессу, отличался, как отмечают эксперты, поверхностностью и преувеличивал значение полученных результатов. Интерес к этой работе подогревали СМИ, регулярно публиковавшие материалы о случаях смерти людей от сердечной недостаточности, в том числе и в связи с дефектами работы кардиостимуляторов и других медицинских устройств. Большинство ученых сходятся во мнении, что проект Агентства по атомной энергетике (который не дошел до эксперимента с животными и тем более людьми) был по-настоящему инновационным. Программа же Национального института сердца основывалась на примитивных технологиях, а ее популярность объясняется успешной PR-кампанией.
Главные затруднения, связанные с использованием плутония в системах искусственного сердца, объясняются предрассудками человека, а также дороговизной технологии. В конце 1970-х в кардиостимуляторах начали применять дешевые литиевые аккумуляторы, так что потребность в радиоизотопах отпала. Коллф с коллегами настаивал на необходимости экспериментов на людях. Оппоненты заявляли, что искусственное сердце слишком сложно и чревато ошибками. К середине 1970-х годов под натиском политиков и общественности Агентство по атомной энергетике свернуло работы по атомному сердцу. В 1977 году это же сделал Национальный институт сердца. Колфф вернулся к работе над старым пневматическим искусственным сердцем и добился в этом направлении большого прогресса.
Андрей Борисов
источник
Кто своими ногами не исходил все набережные Москвы, тот многое потерял!
Так исторически сложилось, что все крупные города строились вокруг больших запасов воды. Это важный стратегический момент. Сегодня мы, обладая некоей логикой, понимаем, что самое древнее место в любом городе – наиболее приближённое к реке, морю, океану и прочим озёрам. И в связи с этими монументальными обстоятельствами, любой набережной есть, чем поделиться. Надо быть просто чуть внимательней и обращать внимание на мелочи. Каждый камень – это целая история, берущая начало если не в древности, то достаточно давно, чтобы обрасти массой слухов, легенд и знаковых событий. Но сегодня мы дадим небольшой крен и посмотрим на одну из прибрежных зон столицы под несколько неожиданным углом. Нам предстоит прогулка по Набережной имени Тараса Шевченко
– наиболее популярной среди современной столичной прослойки. Почему? Об этом ниже. На старт! Внимание! GO!
Начав свой путь у Третьего Транспортного Кольца, окинув взглядом комплекс Москва-Cити, бодро выдвигаемся на саму набережную, поближе к воде. Спусков много, у реки можно посидеть, постоять, местами полежать. В саму воду лезть не рекомендуется. Это как с кактусом – любуйся на расстоянии, руками не трогай. Но если очень хочется, то, конечно, можно. Для этого вам надо воспользоваться услугами флотилии Radisson Royal.
Порядка десяти яхт-ресторанов. Ежедневно на такой красавице можно прогуляться по Москве-реке и за время прогулки (1,5–2 часа), увидеть ряд исторических памятников столицы. Здесь мы можем употребить некий аперитив перед основным блюдом (чуть позже). Итальянская и городская-авторская кухни представлены двумя шефами – Лоренцо Страппато и Николаем Бакуновым. По выходным живая музыка и ряд стандартных для любого наземного заведения услуг – дегустации, акции, сезонные предложения, тематические праздники, туристические пакеты и семейные уикенды. Основной причал Гостиница «Украина»: Набережная Тараса Шевченко, последняя остановка«Парк Культуры», с возможностью вернуться назад, естественно. Иначе мы бы и не сели.
***
Прокатились с ветерком, нагуляли аппетит. Пришло время полноценно поесть. Пообедать. Съесть всё, что дадут. Много еды. Омномном, как говорится. Благо, мест с едой вдоль по набережной более чем достаточно. Это и «Erwin. РекаМореОкеан», и «Клёво», и «Латинский квартал». Отдельно хочется отметить «Soluxe Club».
Тут правда вкусно. И гости ресторана это неоднократно подтверждают. Кроме того, здесь приятно в принципе. В меру дорого-богато: стойка из полудрагоценного агата, большой аквариум с живой рыбой «арована», символом процветания в Китае. Великое множество китайских мотивов в интерьере и меню. Два основных направления кухни – Китай и Средиземноморье. Нужно попробовать утку по-пекински, крем-суп из сладких кореньев с мясом краба под базиликовой пенкой, десерт «Дерево Аватар». Средний чек соответствует уровню заведения – за полноценный обед будьте готовы расстаться с с суммой в 3500 руб. Вас ждут по адресу: Кутузовский пр., 2/1, стр. 6, 12:00-00:00.
***
Неспешно идём дальше. С сытым желудком и красо́ты симпатичней) Вот, кажется, руками можно потрогать те самые, знаменитые сталинские высотки, которых на протяжении нашей прогулки можно увидеть целых четыре из семи! Три видны очень явно. Одна чуть вдалеке, в лёгкой дымке московского воздуха. Правда, времени на променад по этой части маршрута уйдёт чуть больше, чем на то, чтобы об этом прочесть. Тем кто ленится гулять дальше, но жаждет любоваться видами, – добро пожаловать на панорамную веранду «Летнего сада».
Локация уютно расположена в самом центре столицы – на крыше сразу двух ночных клубов «МИКС» и «Конструктор». Но ни в коем случае не путайте эти три абсолютно разных бренда! Хотя они и предлагают своим гостям одну услугу – отдых (не будем долго останавливаться на этих точках, позже мы сюда заглянем и освоимся). Итак, «Летний сад» – на 3000 м² можно поесть-попить, насладиться видами, посмотреть фильм на большом экране под открытым небом, позагорать развалившись на шезлонге, убить время за игрой в автоматы или любую настолку. Для детей есть игровая зона. Всё, что надо для того, чтобы провести время одному, с друзьями или с семьёй. Меню представлено двумя основными направлениями в кухне – Европа и Япония. Запиваем авторскими коктейлями от штатного бармена. Площадь и технические мощности позволяют организовать и провести фестиваль фудтраков, что владельцы и делают с лёгкой периодичностью.
Загораем на полноценной площадке с лежаками, мешками, лавками, скамейками и коктейлями! Пожалуй, есть смысл ненадолго тут зависнуть. Тем более, мы это заслужили.
Те, кто знает что такое UNO, Jenga, Мафия, Имаджинариум и Коридор, – порадуются наличию этих настольных игр. Для «староверов» шахматы, шашки и нарды. Для активных – аэрохоккей, кикер и настольный теннис, для геймеров – X-Box. Пари – с таким вы если и сталкивались, то точно не в Москве. Это даже не новое слово, а целое предложение в столичном развлекательном кластере!
***
Отдохнули, поиграли и встали с лежака только когда солнце стало прощаться, исчезая за горизонтом. Пора дальше.Мимо «памятников» современности – ММДЦ «Москва-Сити» и моста «Багратион», связывающего набережную имени Тараса Шевченко с Пресненской и самим ММДЦ. Ну да Бог с ними, с памятниками! Совсем мало времени, пора разогреваться перед ночной частью прогулки. Наш путь лежит в автобус…
А точнее, в «НайтБас» – на эксклюзивную ивент-площадку для мобильных вечеринок! Непривычно и непонятно? Всё по порядку. В 2006-ом году на дорогах Москвы появился необычный автобус. Он буквально манил заглянуть в салон, хоть на минуту, хоть одним глазом… Но минутой и глазком не обходилось. Входили настороженные и удивлённые, выходили радостные и отдохнувшие. За 10 лет существования кардинально и эмоционально ничего не поменялось. Усовершенствованный технически, со своей базой гостей и готовыми ивент-решениями, «НайтБас» по прежнему катается по Москве и дарит позитив людям, которые воспользовались его услугой. Спектр услуг, к слову, широк – от просто вечеринок для друзей до корпоративов и свадеб!
Если вы уж готовы не просто прокатиться, а сеть и поехать, собрав друзей и подруг, – вот ряд основных моментов, о которых надо знать. Спецпредложение – 12 часов за 100к. Стоимость аренды включает: выступление DJ на всё мероприятие, бармена, водителя, караоке, Wi-Fi. Поесть и попить берите с собой, хуже точно не будет!
***
Такие дела. Вообще-то ещё ничего не началось, всё самое интересное впереди. Судорожно вертя головой, в полумраке можно разглядеть Дом Правительства РФ, ранее известный как Дом Советов. Именно его после путча 91-го стали называть «Белым домом». Именно его в октябре 93-го обстреляли танками… Но совсем нет времени по этому поводу грустить, поскольку впереди нас ждёт препати в «Конструкторе».
Самые внимательные не ошиблись, заорав: «Это же Летний сад!!!» Так точно. Это территория, на которой размещается целый мини-квартал на территории Бадаевского пивзавода для отдыха на любой вкус! (Инсайт: в итоге здесь же, но в другом клубе, мы и закончим нашу прогулку.) Карты в айфонах и навигаторы обязательно подведут: фактический адрес «Конструктора» — Кутузовский проспект, но на самом деле ехать нужно на набережную имени Тараса Шевченко. И, минуя проходную со шлагбаумом, примерно полминуты шагать по направлению к новому заведению, открывающемуся в перспективном, но пока ещё не особенно обжитом месте. На крыше которого мы сегодня уже отдыхали, играли и загорали)
Сцена мобильна – уже это одно оправдывает название. Бар и танцпол присутствуют. Мрак стен подчёркнут звукопоглощающим материалом, как бы намекая: «Всё, что происходит в Конструкторе, остаётся в Конструкторе». Суетливый стробоскоп вырывает куски из пространства и тут же растворяется. Где-то за всем этим наблюдает диджей, руки которого исподволь плетут музыкальную паутину, обволакивающую всех, кто её слышит… Тут хочется остаться, и в другой раз мы обязательно так и сделаем. Но сегодня у нас плотный график, и нам пора, и мы летим дальше. Тут недалеко.
***
Плох тот солдат, который не желает стать генералом. Плох тот тусовщик, который не желает тусить на «Крыше мира». Именно туда мы и направляемся дальше. Благо, тут совсем рядом и можно пройтись пешком, ещё раз взглянув через Москву-реку на противоположную сторону, и, возможно, узрев знакомые светящиеся высотки-книги Арбата.
Пожалуй, лучше, чем сами авторы проекта и не скажешь:«Comfort Dance – Comfort Music – Comfort People». Объединив разные поколения, связанные любовью к качественному звучанию, и заботясь об их комфорте, «Крыша Мира» всегда была не просто клубом с баром и танцами, а идеологически сильным местом, пропагандирующим определённые ценности. Сейчас «Крыша» интересует нас в большей степени как локация для ночных танцев, и поверьте, тут есть, с кем и как провести время. Легендарное заведение, куда попасть непросто, но возможно. Так было 10 лет назад. Так есть сейчас. Овеянная слухами и домыслами, «Крыша мира» остаётся магнитом для москвичей и гостей города всех уровней дохода и статуса. Здесь можно встретить «людей из телевизора» и бывшего одноклассника, который 10 лет назад уехал на заработки в Салехард. Здесь выступают артисты с мировым именем и андеграунд. Здесь днём и ночью кипит жизнь. Такое место…
Для любителей «созерцать себя сквозь призму этого мира» и бла-бла-бла здесь тоже найдётся местечко. Днём и в вечерние часы заведение работает как ресторан здорового питания. По вторникам проводит товарищеские пинг-понг турниры, по средам гастрономические ужины. Вы удивитесь, но отчасти идею места отражает Neon Yoga, занятия которой проходят регулярно. Несмотря на тайны и загадки, вот вполне земные и доступные координаты: Кутузовский проспект, д.12, стр.3; тел. +7 901 519 5692.
***
Но мы немного отвлеклись. Начинает всходить солнце, с которым мы прощались совсем недавно, и тело недвусмысленно намекает на то, что давно пора… переместиться в заключительную фазу отдыха – after-party. Ближайшее и наиподходящее для этого место находится буквально в двух шагах и называется МИКС.
Одна из наиболее подходящих площадок для подведения итогов прогулки, концентрации сил на последний рывок и ухода в лихой танцевальный штопор. Устоять на месте будет сложно. Здесь лучшие диджеи играют такую музыку, от которой начинают приплясывать даже волосы. Хотя, возможно, вы просто стоите рядом с огромной колонкой, суть от этого не меняется. Тут действительно забываешь про время, про то, что нет сил, про то, что хотелось спать… Выходишь ближе к полудню, уставший, но довольный, и понимаешь – день прожит не зря!
Место утренних событий, манящих сильнее самой ночи! Клуб премиум-класса, с гордым титулом официального места афтепати всея Москвы. Очень разная публика – побывать тут стремится каждый. Правда, попадают далеко не все, фейс-контроль достаточно строгий.
Тут вам рады с 00:00 до 13:00 (суббота-воскресенье), записывайте адрес: Кутузовский проспект, 12с1. (Въезд со стороны набережной Тараса Шевченко.)
Здесь заканчивается наша прогулка по Набережной имени Тараса Шевченко. За почти полные сутки мы увидели её со всех сторон, хоть и пришлось пару раз возвращаться в исходную точку. Никто не пожалел потраченного времени и сил. Потому что не жалеет никто и никогда. И помните, философия отдыха неизменна во всём мире – гуляй от души, и всё обязательно вернётся)
Источник:
junglefox.me
published on novostiifakty.ru according to the materials gorabbit.ru
Запись Нетривиальные тропинки набережной Тараса Шевченко взята с сайта Новости и факты.