математика

Где скидка выгоднее? - Математическая задача

В одном магазине скидка с первоначальной цены товара 7%, а если покупатель берет сразу 2 товара, то скидка с уже пониженной цены (каждого товара) еще 12%. В другом магазине наоборот, скидка с товара 12%, а если приобретается 2 товара, то скидка с пониженной цены 7%. Где выгоднее купить 2 товара?

Ответ

Одинаково. Решение: в первом магазине скидка при покупке сразу 2-х товаров равна: 100% — 7% = 93% ; 93% — 12%(от 93%) = 81,8%. Во втором магазине скидка при покупке сразу 2-х товаров равна: 100% — 12% = 88% ; 88% — 7%(от 88%) = 81,8%. 

источник

 Легкая математика

Этот список нескольких малоизвестных математических трюков покажет вам, как быстро считать в уме в случаях, посложнее, чем 5 умножить на 10, а ещё ваши знакомые смогут пользоваться вами, как калькулятором.

1. Умножаем на 11
Все мы знаем, как быстро умножить число на 10, нужно лишь добавить ноль в конце, но знаете ли вы, что есть фишка, как легко умножить двузначное число на 11?
Допустим, нам нужно умножить 63 на 11. Возьмите двузначное число, которое нужно умножить на 11 и представьте между его двумя цифрами место:
6_3
Теперь сложите первую и вторую цифру этого числа и поместите в это место:
6_(6+3)_3
И наш результат умножения готов:
63*11=693
Если же результат сложения первой и второй цифры двузначное число, вставляйте только вторую цифру, а к первой цифре исходного числа прибавляйте единицу:
79*11=
7_(7+9)_9
(7+1)_6_9
79*11=869

2. Быстрое возведение в квадрат числа, оканчивающегося на 5
Если вам нужно возвести в квадрат двузначное число, заканчивающееся на 5, то вы можете сделать это очень просто в уме. Умножьте первую цифру числа на саму себя плюс единица и добавьте в конце 25, и это всё:
45*45=4*(4+1)_25=2025

3. Умножение на 5
Для большинства людей умножение на 5 не составляет труда для небольших чисел, но как быстро считать в уме большие числа, умноженные на 5?
Вам нужно взять это число и разделить на 2. Если результат целое число, то добавьте к нему 0 в конце, если нет, отбросьте остаток и добавьте 5 в конце:
1248*5=(1248/2)_(0 или 5)=624_(0 или 5)=6240 (результат деления на 2 целое число)
4469*5=(4469/2)_(0 или 5)=(2234.5)_(0 или 5)=22345 (результат деления на 2 число с остатком)

4. Умножение на 4
Это очень простая и, с первого взгляда, очевидная фишка умножения любого числа на 4, но, несмотря на это, люди не догадываются о ней в нужный момент. Чтобы просто умножить любое число на 4, нужно умножить его на 2, а потом снова умножить на 2:
67*4=67*2*2=134*2=268

Вы уверенны, что выбрали правильную профессию?

5. Вычислить 15%
Если вам нужно в уме вычислить 15% от какого-либо числа, то есть простой способ, как это сделать. Возьмите 10% от числа (разделив число на 10) и добавьте к этому числу половину от полученных 10%.
15% от 884 рублей=(10% от 884 рублей)+((10% от 884 рублей)/2)=88.4 рубля + 44.2 рубля = 132.6 рублей

6. Умножение больших чисел
Если вам нужно перемножить большие числа в уме и одно из них четное, то вы можете воспользоваться методом упрощения множителей, уменьшая четно число в два раза, а второе увеличивая в два раза:
32*125 это
16*250 это
8*500 это
4*1000=4000

7. Деление на 5
Разделить большое число на 5 в голове очень просто. Всё, что нужно, это умножить число на 2 и сместить запятую на один знак назад:
175/5
Умножаем на 2: 175*2=350
Смещаем на один знак: 35.0 или 35
1244/5
Умножаем на 2: 1244*2=2488
Смещаем на один знак: 248.8

8. Вычитание из 1000
Чтобы вычесть большое число из тысячи, следуйте простой технике, отнимайте все цифры числа от 9, кроме последней, а последнее цифру числа отнимите от 10:
1000-489=(9-4)_(9-8)_(10-9)=511
Разумеется, чтобы научиться быстро считать в уме, нужно много раз попрактиковаться в использовании этих приемов, чтобы довести их до автоматизма, одноразовое прочтение оставит только нули в вашей голове.
Для большинства людей умножение на 5 не составляет труда для небольших чисел, но как быстро считать в уме большие числа, умноженные на 5?
источник 

Любопытные факты о математике

Сегодня, мы поделимся с вами интересными и необычными фактами из мира этой серьезной науки. Место для несерьезного или просто увлекательного, найдется в любой точной науке. Главное, желание отыскать это…

Английский математик Абрахам де Муавр в престарелом возрасте однажды обнаружил, что продолжительность его сна растёт на 15 минут в день. Составив арифметическую прогрессию, он определил дату, когда она достигла бы 24 часов — 27 ноября 1754 года. В этот день он и умер.

Религиозные евреи стараются избегать христианской символики и вообще знаков, похожих на крест. Например, ученики некоторых израильских школ вместо знака «плюс» пишут знак, повторяющий перевёрнутую букву «т».

Подлинность купюры евро можно проверить по её серийному номеру буквы и одиннадцати цифр. Нужно заменить букву на её порядковый номер в английском алфавите, сложить это число с остальными, затем складывать цифры результата, пока не получим одну цифру.

Если эта цифра — 8, то купюра подлинная. Ещё один способ проверки заключается в подобном складывании цифр, но без буквы. Результат из одной буквы и цифры должен соответствовать определённой стране, так как евро печатают в разных странах. Например, для Германии это X2.

Слово «алгебра» одинаково звучит на всех языках мира. Оно – арабского происхождения, и ввел его в обиход великий математик Средней Азии конца 8 – начала 9 века Махаммед ибн Муса аль-Хорезми. Его математический трактат назывался «Альджебр валь мукабала», от первого слова которого и произошло международное название науки – алгебра.

Бытует мнение, что Альфред Нобель не включил математику в список дисциплин своей премии из-за того, что его жена изменила ему с математиком. На самом деле Нобель никогда не был женат. Настоящая причина игнорирования математики Нобелем неизвестна, но есть несколько предположений. Например, на тот момент уже существовала премия по математике от шведского короля. Другое — математики не делают важных изобретений для человечества, так как эта наука имеет чисто теоретический характер.

Треугольник Рело — это геометрическая фигура, образованная пересечением трёх равных кругов радиуса a с центрами в вершинах равностороннего треугольника со стороной a. Сверло, сделанное на основе треугольника Рело, позволяет сверлить квадратные отверстия (с неточностью в 2%).

В русской математической литературе ноль не является натуральным числом, а в западной, наоборот, принадлежит ко множеству натуральных чисел.

Американский математик Джордж Данциг, будучи аспирантом университета, однажды опоздал на урок и принял написанные на доске уравнения за домашнее задание. Оно показалось ему сложнее обычного, но через несколько дней он смог его выполнить. Оказалось, что он решил две «нерешаемые» проблемы в статистике, над которыми бились многие учёные.

Сумма всех чисел на рулетке в казино равняется числу дьявола — 666.

В штате Индиана в 1897 году был выпущен билль, законодательно устанавливающий значение числа Пи равным 3,2. Данный билль не стал законом благодаря своевременному вмешательству профессора университета.

Любопытные факты о математике
Софья Ковалевская познакомилась с математикой в раннем детстве, когда на её комнату не хватило обоев, вместо которых были наклеены листы с лекциями Остроградского о дифференциальном и интегральном исчислении.

Чтобы получить возможность заниматься наукой, Софье Ковалевской пришлось заключить фиктивный брак и уехать из России. В то время российские университеты просто не принимали женщин, а чтобы эмигрировать, девушка должна была иметь согласие отца или мужа. Так как отец Софьи был категорически против, она вышла замуж за молодого учёного Владимира Ковалевского. Хотя в итоге их брак стал фактическим, и у них родилась дочь.

Используемая нами десятичная система счисления возникла по причине того, что у человека на руках 10 пальцев. Способность к абстрактному счёту появилась у людей не сразу, а использовать для счёта именно пальцы оказалось удобнее всего. Цивилизация майя и независимо от них чукчи исторически использовали двадцатичную систему счисления, применяя пальцы не только рук, но и ног. В основе распространённых в древних Шумере и Вавилоне двенадцатеричной и шестидесятиричной систем тоже было использование рук: большим пальцем отсчитывались фаланги других пальцев ладони, число которых равно 12.

Во многих источниках, зачастую с целью ободрения плохо успевающих учеников, встречается утверждение, что Эйнштейн завалил в школе математику или, более того, вообще учился из рук вон плохо по всем предметам. На самом деле всё обстояло не так: Альберт ещё в раннем возрасте начал проявлять талант в математике и знал её далеко за пределами школьной программы.

Позднее Эйнштейн не смог поступить в Швейцарскую высшую политехническую школу Цюриха, показав высшие результаты по физике и математике, но не добрав нужное количество баллов в других дисциплинах. Подтянув эти предметы, он через год в возрасте 17 лет стал студентом данного заведения.

Любопытные факты о математике
Одна знакомая дама просила Эйнштейна позвонить ей, но предупредила, что номер ее телефона очень сложно запомнить: — 24-361. Запомнили? Повторите! Удивленный Эйнштейн ответил: — Конечно, запомнил! Две дюжины и 19 в квадрате.

Каждый раз, когда вы перемешиваете колоду, вы создаёте последовательность карт, которая с очень высокой степенью вероятности никогда не существовала во Вселенной. Количество комбинаций в стандартной игральной колоде равно 52!, или 8×1067. Чтобы достичь хотя бы 50% вероятности получить комбинацию второй раз, нужно сделать 9×1033 перемешиваний. А если гипотетически заставить всё население планеты за последние 500 лет непрерывно мешать карты и каждую секунду получать новую колоду, в итоге получится не более 1020 разных последовательностей.

Леонардо да Винчи вывел правило, согласно которому квадрат диаметра ствола дерева равен сумме квадратов диаметров ветвей, взятых на общей фиксированной высоте. Более поздние исследования подтвердили его с одним лишь отличием — степень в формуле необязательно равняется 2, а лежит в пределах от 1,8 до 2,3. Традиционно считалось, что эта закономерность объясняется тем, что у дерева с такой структурой оптимальный механизм снабжения веток питательными веществами. Однако в 2010 году американский физик Кристоф Эллой нашёл более простое механическое объяснение феномену: если рассматривать дерево как фрактал, то закон Леонардо минимизирует вероятность слома веток под воздействием ветра.

Муравьи способны объяснять друг другу путь к пище, умеют считать и выполнять простейшие арифметические действия. Например, когда муравей-разведчик находит еду в специально сконструированном лабиринте, он возвращается и объясняет, как пройти к ней, другим муравьям.

Если в это время заменить лабиринт на аналогичный, то есть убрать феромоновый след, сородичи разведчика все равно найдут пищу. В другом эксперименте разведчик ищет в лабиринте из многих одинаковых ответвлений, и после его объяснений другие насекомые сразу бегут к обозначенному ответвлению. А если сначала приучить разведчика к тому, что пища с большей вероятностью будет находиться в 10, 20 и так далее ответвлениях, муравьи принимают их за базовые и начинают ориентироваться, прибавляя или отнимая от них нужное число, то есть используют систему, аналогичную римским цифрам.

В феврале 1992 года состоялся розыгрыш лотереи Вирджинии «6 из 44», где джек-пот составлял 27 миллионов долларов.

Число всех возможных комбинаций в таком виде лотереи было чуть выше 7 миллионов, а каждый билет стоил 1 доллар.

Предприимчивые люди из Австралии создали фонд, собрав по 3 тысячи долларов от 2500 человек, купили нужное число бланков и вручную заполнили их различными комбинациями цифр, получив после выплаты налогов тройную прибыль.

Стивен Хокинг — один из крупнейших физиков-теоретиков и популяризатор науки. В рассказе о себе Хокинг упомянул, что стал профессором математики, не получая никакого математического образования со времён средней школы. Когда Хокинг начал преподавать математику в Оксфорде, он читал учебник, опережая собственных студентов на две недели.

Лабораторные исследования показали, что пчёлы умеют выбирать оптимальный маршрут. После локализации расставленных в разных местах цветков пчела совершает облёт и возвращается обратно таким образом, что итоговый путь оказывается наикратчайшим. Таким образом, эти насекомые эффективно справляются с классической «задачей коммивояжёра» из информатики, на решение которой современные компьютеры, в зависимости от количества точек, могут тратить не один день.

Существует математический закон Бенфорда, который гласит, что распределение первых цифр в числах каких-либо наборов данных из реального мира неравномерно. Цифры от 1 до 4 в таких наборах (а именно статистика рождаемости или смертности, номера домов и т.п.) на первой позиции встречаются гораздо чаще, чем цифры от 5 до 9. Практическое применение этого закона заключается в том, что по нему можно проверять на достоверность бухгалтерские и финансовые данные, результаты выборов и многое другое. В некоторых штатах США несоответствие данных закону Бенфорда даже является формальной уликой в суде.

Известно много притч о том, как один человек предлагает другому расплатиться с ним за некоторую услугу следующим образом: на первую клетку шахматной доски тот положит одно рисовое зёрнышко, на вторую — два и так далее: на каждую следующую клетку вдвое больше, чем на предыдущую. В результате тот, кто расплачивается таким образом, непременно разоряется. Это неудивительно: подсчитано, что общий вес риса составит более 460 миллиардов тонн

У числа Пи есть два неофициальных праздника. Первый — 14 марта, потому что этот день в Америке записывается как 3.14. Второй — 22 июля, которое в европейском формате записывается 22/7, а значение такой дроби является достаточно популярным приближённым значением числа Пи.

Американский математик Джордж Данциг, будучи аспирантом университета, однажды опоздал на урок и принял написанные на доске уравнения за домашнее задание. Оно показалось ему сложнее обычного, но через несколько дней он смог его выполнить. Оказалось, что он решил две «нерешаемые» проблемы в статистике, над которыми бились многие учёные.

Среди всех фигур, с одинаковым периметром, у круга будет самая большая площадь. И наоборот, среди всех фигур с одинаковой площадью, у круга будет самый маленький периметр.

На самом деле, миг – это единица времени, которая длится примерно сотую долю секунды.

Рене Декарт в 1637 году ввел в математику термины «действительное число» и «мнимое число».

Пирог можно разрезать на восемь равных частей тремя касаниями ножа. Причем, существует два способа сделать это.

В группе, где находится 23 или более человек, вероятность, что день рождения двух из них совпадет, превышает 50 процентов, а в группе 60 человек и более такая вероятность — около 99 процентов.

Если умножить ваш возраст на 7, затем умножить на 1443, то результатом будет ваш возраст написанный три раза подряд.

В математике существуют: теория кос, теория игр и теория узлов.

Ноль «0» – единственное число, которое невозможно написать римскими цифрами.

Максимальное число, которое можно записать римскими цифрами, не нарушая правил Шварцмана (правил записи римских цифр) — 3999 (MMMCMXCIX) — больше трех цифр подряд писать нельзя

Знак равенства «=» впервые применил британец Роберт Рекорд в 1557-м году. Он писал, что нет на свете более одинаковых предметов, чем два равных и параллельных отрезка.

Сумма всех чисел от одного до ста равняется 5050.

В тайванском городе Тайбэй жителям разрешено упускать цифру четыре, поскольку на китайском языке слово это звучит тождественно слову «смерть». По этой причине во многих зданиях города четвертый этаж отсутствует.

Число тринадцать, предположительно, стало считаться несчастливым из-за библейского сказания о Тайной Вечери, где присутствовало именно тринадцать человек. Причем тринадцатым был Иуда Искариот.

Малоизвестный математик из Британии посвятил большую часть жизни изучению законов логики. Звали его Чарльз Лютвидж Доджсон. Имя это известно не такому большому количеству людей, зато известен псевдоним, под которым он писал свои литературные шедевры — Льюис Кэрролл.

Гречанка Гепатия считается первой женщиной-математиком в истории. Жила она в IV-V веках в египетской Александрии.

Результаты недавно проведенного исследования свидетельствуют, что в областях знаний, где доминируют мужчины, слабый пол стремится завуалировать типично женские качества, чтобы выглядеть более убедительно. Например, женщины-математики предпочитают обходиться без макияжа.

Знаете ли вы, что одна из кривых линий называется «Локон Аньезе» в честь первой в мире женщины-профессора математики Марии Гаэтано Аньезе?

Лермонтов, будучи разностороннее талантливым человеком, помимо литературного творчества был хорошим художником и любил математику. Элементы высшей математики, аналитическая геометрия, начала дифференциального и интегрального исчисления увлекали Лермонтова в течении всей его жизни. Он всегда возил с собой учебник математики французского автора Безу.

В 18 веке популярностью пользовался шахматный автомат венгерского механика Вольфганга фон Кемпелена, который показывал свою машину при австрийском и русском дворах, а затем демонстрировал публично в Париже и Лондоне.

Наполеон I играл с этим автоматом, уверенный, что меряется силами с машиной. В действительности ни одна шахматная машина не действовала автоматически. Внутри прятался искусный живой шахматист, который и двигал фигуры. В середине прошлого века знаменитый автомат попал в Америку и кончил там свое существование во время пожара в Филадельфии.

В шахматной партии из 40 ходов количество вариантов развития игры может превышать количество атомов в космическом пространстве. Ведь всего возможно огромное количество вариантов – 1,5 на 10 в 128-й степени.

Наполеон Бонапарт писал математические труды. А один геометрический факт называется «Задача Наполеона»

Листья на ветке растения всегда располагаются в строгом порядке, отстоя друг от друга на определённый угол по или против часовой стрелки. Величина угла разная у различных растений, но её всегда можно описать дробью, в числителе и знаменателе которой — числа из ряда Фибоначчи. Например, у бука этот угол равен 1/3, или 120°, у дуба и абрикоса — 2/5, у груши и тополя — 3/8, у ивы и миндаля — 5/13 и т.д. Такое расположение позволяет листьям наиболее эффективно получать влагу и солнечный свет.

На Руси в старину использовались в качестве единиц измерения объёма ведро (около 12 л), штоф (десятая часть ведра). В США, Англии и других странах используются баррель (около 159 л), галлон (около 4 л), бушель (около 36 л), пинта (от 470 до 568 кубических сантиметров).

Малые старинные русские меры длины — пядь и локоть.

Пядь — это расстояние между вытянутыми большим и указательным пальцами руки при их наибольшем удалении (размер пяди колебался от 19 см до 23 см). Говорят «Не отдать ни пяди земли», подразумевая не отдать, не уступить даже самой малой части своей земли. Об очень умном человеке говорят: «Семи пядей во лбу».

Локоть — это расстояние от конца вытянутого среднего пальца руки до локтевого сгиба (размер локтя колебался в пределах от 38 см до 46 см и соответствовал двум пядям). Сохранилась поговорка: «Сам с ноготок, а борода с локоток».

Квадратные уравнения были созданы в XI веке в Индии. Самым большим числом, используемым в Индии, было 10 в 53-ей степени, в то время как, греки и римляне оперировали только числами в 6-ой степени.

Вероятно все замечали на себе и на окружающих, что среди цифр есть излюбленные, к которым мы питаем особенное пристрастие. Мы, например, очень любим «круглые числа», т. е. оканчивающиеся на 0 или 5. Пристрастие к определенным числам, предпочтение их другим, заложено в человеческой натуре гораздо глубже, чем обыкновенно думают. В этом отношении сходятся вкусы не только европейцев и их предков, напр., древних римлян, — но даже первобытных народов других частей света.

При каждой переписи населения обычно наблюдается чрезмерное обилие людей, возраст которых оканчивается на 5 или на 0; их гораздо больше, чем должно бы быть. Причина кроется, конечно, в том, что люди не помнят, твердо, сколько им лет и, показывая возраст, невольно «округляют» годы. Замечательно, что подобное же преобладание «круглых» возрастов наблюдается и на могильных памятниках древних римлян.

Мы считаем отрицательные числа чем-то естественным, но так было далеко не всегда.

Впервые отрицательные числа были узаконены в Китае в III веке, но использовались лишь для исключительных случаев, так как считались, в общем, бесмыссленными. Чуть позднее отрицательные числа стали использоваться в Индии для обозначения долгов, но западнее они не прижились – знаменитый Диофант Александрийский утверждал, что уравнение 4x+20=0 – абсурдно.

В Европе отрицательные числа появились благодаря Леонардо Пизанскому (Фибоначчи), который тоже ввёл его для решения финансовых задач с долгами – в 1202 году он впервые использовал отрицательные числа для подсчёта своих убытков.

Тем не менее до XVII века отрицательные числа были “в загоне” и даже в XVII веке знаменитый математик Блез Паскаль утверждал, что 0-4=0 ибо нет такого числа, которое может быть меньше ничего, а вплоть до XIX века математики часто отбрасывали в своих вычислениях отрицательные числа, считая их бессмысленными…

Первыми «вычислительными устройствами», которыми пользовались в древности люди, были пальцы рук и камешки. Позднее появились бирки с зарубками и верёвки с узелками. В Древнем Египте и Древней Греции задолго до нашей эры использовали абак – доску с полосками, по которым продвигались камешки. Это было первое устройство, специально предназначенное для вычислений. Со временем абак совершенствовали – в римском абаке камешки или шарики передвигались по желобкам. Абак просуществовал до 18 века, когда его заменили письменные вычисления. Русский абак – счёты появились в 16 веке. Ими пользуются и в наши дни. Большое преимущество русских счётов в том, что они основаны на десятичной системе счисления, а не на пятеричной, как все остальные абаки.

Самый древний математический труд был найден в Свазиленде – кость бабуина с выбитыми чёрточками (кость из Лембобо), которые предположительно были результатом какого-то вычисления. Возраст кости – 37 тысяч лет.

Во Франции был найден ещё более сложный математический труд – волчья кость, на которой выбиты чёрточки, сгруппированные по пять штук. Возраст кости – около 30 тысяч лет.

Ну и наконец знаменитая кость из Ишанго (Конго) на которой выбиты группы простых чисел. Считается, что кость возникла 18-20 тысяч лет назад.

А вот древнейшим математическим текстом могут считаться вавилонские таблички с кодовым названием Plimpton 322, созданные в 1800-1900 году до нашей эры.

У древних египтян не было таблиц умножения и правил. Тем не менее, умножать они умели и пользовались для этого “компьютерным” способом – разложением чисел в двоичный ряд. Как же они это делали? А вот как:

Например, нужно умножить 22 на 35.

Записываем 22 35

Теперь делим левое число на 2, а правое умножаем на 2. Подчёркиваем справа числа только тогда когда оно делится на 2.
Итак,
А теперь складываем 70+140+560=770
Любопытные факты о математике
Правильный результат!

Египтяне не знали дробей вроде 2/3 или 3/4. Никаких числителей! Египетские жрецы оперировали лишь с дробями, где числитель был всегда 1 и дробь записывалась так: целое число с овалом над ним. То есть 4 с овалом означало 1/4.

А что же дроби вроде 5/6 ? Египетские математики раскладывали их на дроби с числителем 1. То есть 1/2 + 1/3. То есть 2 и 3 с овалом вверху.

Ну что ж, это просто. 2/7 = 1/7 + 1/7. Отнюдь! Ещё одним правилом египтян было отсутствие в ряду дробей повторяющихся чисел. То есть 2/7 по их мнению было 1/4+1/28.

В общем, непроста была жизнь египетского математика…

источник

Притча, которую мне давно рассказал наш преподаватель по математическому анализу (это важная деталь)

Один юноша пошёл учиться убивать драконов.
Десять лет он учился убивать драконов и стал настоящим мастером своего дела. Взял меч и пошёл в лес, но не встретил ни одного дракона. Он пошёл к своему учителю и задал вопрос:
— Ты научил меня убивать драконов, но теперь я не могу найти ни одного дракона. Что же мне теперь делать?
— Учи других убивать драконов.
источник

Число 2519

Некоторые красивые факты про число 2519

Если mod — это остаток от деления одного число на другое, то:

2519 Mod n
2519 Mod 2 = 1
2519 Mod 3 = 2
2519 Mod 4 = 3
2519 Mod 5 = 4
2519 Mod 6 = 5
2519 Mod 7 = 6
2519 Mod 8 = 7
2519 Mod 9 = 8
2519 Mod 10 = 9

Некоторые последовательности и число 2519
1259 x 2 + 1 = 2519
839 x 3 + 2 = 2519
629 x 4 + 3 = 2519
503 x 5 + 4 = 2519
419 x 6 + 5 = 2519
359 x 7 + 6 = 2519
314 x 8 + 7 = 2519
279 x 9 + 8 = 2519
251 x 10 + 9 = 2519

источник

Самое большое число или "Число Грэма" на пальцах

Как только ребенок (а это происходит где–то года в три–четыре) понимает, что все числа делятся на три большие группы «один, два и много», он тут же пытается выяснить, насколько много бывает много, чем много отличается от очень много, и может ли оказаться так много, что больше не бывает.

Наверняка вы играли с родителями в интересную (для того возраста) игру, кто назовет самое большее число, и если предок был не глупее пятиклассника, то он всегда выигрывал, на каждый «миллион» отвечая «два миллиона», а на «миллиард» — «два миллиарда» или «миллиард плюс один».

Уже к первому классу школы каждый знает — чисел бесконечное множество, они никогда не заканчиваются и самого большого числа не бывает. К любому миллиону триллионов миллиардов всегда можно сказать «плюс один» и остаться в выигрыше. А чуточку позже приходит (должно прийти!) понимание, что длинные строки из цифр сами по себе ничего не значат. Все этитриллионы миллиардов только тогда имеют смысл, когда служат представлением какого–то количества предметов или же описывают некое явление. Выдумать длиннющее число, которое ничего из себя не представляет, кроме набора долгозвучащих цифр, нет никакого труда, их итак бесконечное количество. Наука, в какой–то образной мере, занимается тем, что вытаскивает из этой необозримой бездны совершенно конкретные комбинации цифр, присовокупляя к некому физическому явлению, например скорости света, числу Авогадро или постоянной Планка.

И сразу же возникает вопрос, а какое на свете самое больше число, которое что–то означает? В этой статье я попытаюсь рассказать о цифровом монстре, называемом число Грэма, хотя строго говоря, науке известны числа и побольше. Число Грэма самое распиаренное, можно сказать «на слуху» у широкой публики, потому что оно довольно просто в объяснении и все же достаточно велико, чтобы вскружить голову. Вообще, тут необходимо объявить небольшой disclaimer (рус. предостережение). Пусть прозвучит как шутка, но я нифига не шучу. Говорю вполне серьезно — дотошное ковыряние в подобных математических глубинах в совокупности с безудержным расширением границ восприятия может оказать (и окажет) серьезное влияние на мироощущение, на позиционирование личности в обществе и космосе, и, в конечном итоге, на общее психологическое состояниековыряющего, или, будем называть вещи своими именами — открывает дорогу к шизе. Не стоит чересчур внимательно вчитываться в нижеследующий текст, не стоит слишком ярко и живо представлять описываемые в нем вещи. И не говорите потом, что вас не предупреждали!

Прежде чем переходить к числам–монстрам, потренируемся для начала на кошках. Напомню, что для описания больших чисел (не монстров, а просто больших чисел) удобно пользоваться научным или т.н. экспоненциальным способом записи.

Когда говорят, скажем, о количестве звезд во Вселенной (в Обозримой Вселенной), никакой идиот не лезет считать сколько их там в буквальном смысле с точностью до последней звезды. Считается, что примерно 1021 штук. И это оценка снизу. Значит общее количество звезд можно выразить числом, у которого после единицы стоит 21 ноль, т.е. «1 000 000 000 000 000 000 000».

Так выглядит небольшая часть из них (около 100 000) в шаровом скоплении Омега Центавра.

Самое большое число или "Число Грэма" на пальцах

Естественно, когда речь идет о подобных масштабах, действительные цифры в числе большого значения не имеют, все ведь весьма условно и примерно. Может быть на самом деле число звезд во Вселенной «1 564 861 615 140 168 357 973», а может «9 384 684 643 798 468 483 745». А то и «3 333 333 333 333 333 333 333», почему нет, хотя маловероятно, конечно. В космологии, науке о свойствах Вселенной в целом, такими мелочами не морочатся. Главное представлять, что примерно это число состоит из 22 цифр, от чего удобней считать его единицей с 21 нулем, и записывать как 1021. Правило общее и весьма простое. Какая цифра или число стоят на месте степени (напечатаны мелким шрифтом сверху над числом 10вот тут), столько нолей после единицы будет в этом числе, если расписать его по–простецки, знаками подряд, а не по–научному. У некоторых чисел существуют «человеческие названия», например 103 мы называем «тысяча», 106 — «миллион», а 109 — «миллиард», а у некоторых нет. Скажем у 1059 нет общепринятого названия. А у 1021, кстати, есть — это «секстиллион».

Все, что идет до миллиона, практически любому человеку понятно интуитивно, ведь кто не хочет стать миллионером? Дальше у некоторых начинаются проблемы. Хотя миллиард (109) тоже знают почти все. До миллиарда даже можно досчитать. Если только родившись, буквально в тот же момент, когда выбрался из… ну… откуда там люди выбираются… начать считать раз в секунду «один, два, три, четыре…» и не спать, не пить, не есть, а только считать–считать–считать без устали днем и ночью, то когда стукнет 32 года можно досчитать до миллиарда, потому что миллиард секунд примерно составляют 32 оборота Земли вокруг Солнца.

7 миллиардов — количество людей планете. Исходя из вышеизложенного, посчитать их всех по порядку в течении человеческой жизни совершенно невозможно, придется прожить больше двухсот лет.

100 миллиардов (1011) — столько или около того людей жило на планете за всю ее историю. 100 миллиардов гамбургеров продала компания Макдональдс к 1998му году за 50 лет своего существования. 100 миллиардов звезд (ну, чуть больше) находится в нашей галактике Млечный Путь, и Солнце — одна из них. Такое же количество галактик содержится в обозримой Вселенной. 100 миллиардов нейтронов находится в головном мозге человека. И столько же анаэробных бактерий проживают у каждого читающего эти строки в слепой кишке.

Триллион (1012) — число, которым редко пользуются. До триллиона досчитать невозможно, на это уйдет 32 тысячи лет. Триллион секунд назад люди жили в пещерах и охотились с копьями на мамонтов. Да, триллион секунд назад на Земле жили мамонты. Во всех океанах планеты примерно триллион рыб. В соседней с нами галактике Андромеды около триллиона звезд. Человек состоит из 10 триллионов клеток. ВВП России в 2013м году составил 66 триллионов рублей (в рублях 2013го года). От Земли до Сатурна 100 триллионов сантиметров и столько же букв в целом было отпечатано в когда–либо опубликованных книгах человечества.

Квадриллион (1015, миллион миллиардов) — столько всего муравьев на планете. Это слово нормальные люди вслух не произносят, ну, признайтесь, когда вы последний раз в разговоре слышали «квадриллион чего–то»?

Квинтиллион (1018, миллиард миллиардов) — столько существует возможных конфигураций при сборке кубика Рубика 3х3х3. Так же количество кубометров воды в мировом океане.

Секстиллион (1021) — это число нам уже встречалось. Количество звезд в Обозримой Вселенной. Количество песчинок всех пустынь планеты. Количество транзисторов во всех существующих электронных устройствах человечества, если Intel нам не врал.

10 секстиллионов (1022) — количество молекул в грамме воды.

1024 — масса Земли в килограммах.

1026 — диаметр Обозримой Вселенной в метрах, но в метрах считать не очень удобно, общепринятые границы Обозримой Вселенной 93 миллиарда световых лет.

Размерами, большими чем Обозримая Вселенная наука не оперирует. Мы знаем наверняка, что Обозримая Вселенная это не вся–вся–вся Вселенная. Это та часть, что мы, хотя бы теоретически, можем видеть и наблюдать. Или могли видеть в прошлом. Или сможем увидеть когда–нибудь в отдаленном будущем, оставаясь в рамках современной науки. От остальных частей Вселенной даже со скоростью света сигналы не смогут до нас добраться, от чего этих мест с нашей точки зрения как бы не существует. Насколько велика та большая Вселенная на самом деле никто не знает. Может быть в миллион раз больше, чем Обозримая. А может в миллиард. А может и вообще бесконечная. Говорю же, это уже не наука, а гадание на кофейной гуще. У ученых есть кое–какие догадки, но это больше фантазии, чем реальность.

Однако даже в Обозримую Вселенную можно напихать гораздо больше чего–то более другого, чем метры.

1051 атомов составляют планету Земля.

1080 примерное количество элементарных частиц в Обозримой Вселенной.

1090 примерное количество фотонов в Обозримой Вселенной. Их почти в 10 миллиардов раз больше, чем элементарных частиц, электронов и протонов.

10100 — гугол. Это число ничего физически не значит, просто круглое и красивое. Компания, которая поставила себе целью индексировать гугол ссылок (шутка, конечно, это же больше, чем число элементарных частиц во Вселенной!) в 1998м году взяла себе название Google.

10122 протонов понадобится, чтобы набить Обозримую Вселенную под завязку, плотненько так, протончик к протончику, впритык.

10185 планковских объемов занимает Обозримая Вселенная. Меньших величин, чем планковский объем (кубик размеров планковской длины 10–35 метра) наша наука не знает. Наверняка, как и со Вселенной, там есть что–то еще более мелкое, но вменяемых формул для подобных мелочей ученые еще не придумали, одни сплошные спекуляции.

Получается, что 10185 или около того — наибольшее число, которое в принципе может что–то значить в современной науке. В науке, которая может пощупать и измерить. Это то, что существует или могло бы существовать, если так случилось, что мы узнали о Вселенной все, что можно было узнать. Число состоит из 186 цифр, вот оно:

100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

Наука здесь, конечно же, не заканчивается, но дальше уже идут вольные теории, догадки, а то и просто околонаучный чес и гон. Например, вы наверняка слышали про инфляционную теорию, согласно которой, возможно, наша Вселенная лишь часть более общей Мультивселенной, в которой этих вселенных как пузырей в океане шампанского.

Самое большое число или "Число Грэма" на пальцах

Или слышали про теорию струн, согласно которой может существовать около 10500 конфигураций колебаний струн, а значит такое же количество потенциальных вселенных, каждая со своими законами.

Чем дальше в лес, тем меньше теоретической физики и вообще науки остается в набирающих объем числах, и за колонками нулей начинает проглядывать все более чистая, ничем не замутненная царица наук. Математика это ведь не физика, тут ограничений нет и стыдиться нечего, гуляй душа, пиши нули в формулах хоть до упаду.

Упомяну лишь известный широкой публике гуголплекс. Число у которого гугол цифр, десять в степени гугол (10гугол), или десять в степени десять в степени сто (1010100).

1010 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

Не буду записывать его цифрами. Гуголплекс не значит абсолютно ничего. Человек не может представить себе гуголплекс чего бы то ни было, это физически невозможно. Чтобы записать такое число понадобится вся Обозримая Вселенная, если писать «нано–ручкой» прямо по вакууму фактически в планковские ячейки космоса. Переведем всю материю на чернила и заполним Вселенную одними сплошными цифрами, тогда получим гуголплекс. Но математики (страшные люди!) гуголпрексом только разминаются, это нижайшая планка, с которой для них стартуют настоящие ничтяки. И если вы думаете, что гуголплекс в степени гуголплекс это то, о чем пойдет речь, вы даже не представляете, НАСКОЛЬКО ошибаетесь.

За гуголплексом идут много интересных чисел, имеющих ту или иную роль в математических доказательствах, долго ли коротко, перейдем сразу к числу Грэма, названному так в честь (ну, естественно) математика Рональда Грэма. Сначала расскажу, что это такое и для чего нужно, затем образно и на пальцах™ (та–дам!) опишу, каково оно по величине, а затем уже напишу само число. Точнее попытаюсь объяснить, что же я написал.

Число Грэма появилось в работе, посвященной решению одной из задач в теории Рамсея, причем «рамсея» тут не деепричастие несовершенного вида, а фамилия другого математика, Франка Рамсея. Задача конечно же довольно надуманная с обывательской точки зрения, хоть и не сильно замороченная, но чуточку пораскинуть мозгами все же придется.

Представьте себе куб, все вершины которого соединены линиями–отрезками двух цветов, красного или синего. Соединены и раскрашены в случайном порядке. Кое–кто уже догадался, что речь пойдет о разделе математики под названием комбинаторика.

Самое большое число или "Число Грэма" на пальцах

Сможем ли мы исхитриться и так подобрать конфигурацию цветов (а их всего два — красный и синий), чтобы при раскраске этих отрезков у нас НЕ ВЫШЛО, что все отрезки одного цвета, соединяющие четыре точки, лежат в одной плоскости? В данном случае, НЕ представляют из себя такую фигуру:

Самое большое число или "Число Грэма" на пальцах

Можете сами покумекать, покрутить куб в воображении перед глазами, сделать подобное не так уж и сложно. Цвета два, вершин (углов) у куба 8, значит отрезков их соединяющих — 28. Можно так подобрать конфигурацию раскраски, что мы нигде не получим вышеуказанной фигуры, во всех возможных плоскостях будут разноцветные линии.

А что, если у нас больше измерений? Что, если мы возьмем не куб, а четырехмерный куб, т.е. тессеракт? Сможем ли мы провернуть тот же фокус, что и с трехмерным?

Самое большое число или "Число Грэма" на пальцах

Самое большое число или "Число Грэма" на пальцах

Даже не стану объяснять, что такое четырехмерный куб, надеюсь все знают? У четырехмерного куба 16 вершин. И не нужно пыжить мозг и пытаться представить четырехмерный куб. Это же чистая математика. Посмотрел на количество измерений, подставил в формулу, получил количество вершин, ребер, граней и так далее. Ну, или в Википедии подглядел, если формулы не помнишь. Итак у четырехмерного куба 16 вершин и 120 отрезков их соединяющих. Количество комбинаций раскраски в четырехмерном случае гораздо больше, чем в трехмерном, но и тут не сильно сложно посчитать, разделить, сократить и так далее. Короче выяснить, что в четырехмерном пространстве можно так исхитриться с раскраской отрезков у гиперкуба, что все линии одного цвета, соединяющие 4 точки, не будут лежать в одной плоскости.

В пятимерном? И в пятимерном, там где куб называется пентерактом или пентакубом, тоже можно.
И в шестимерном.

А дальше уже сложности. Грэм не смог математически доказать, что у семимерного гиперкуба удастся провернуть такую операцию. И у восьмимерного и так далее. Но данное «и так далее», оказалось, не уходит в бесконечность, а заканчивается неким очень большим числом, которое и назвали «числом Грэма».

То есть существует какая–то минимальная размерность гиперкуба, при котором условие нарушается, и уже невозможно избежать комбинации раскраски отрезков, что четыре точки одного цвета будут лежать в одной плоскости. И эта минимальная размерность точно больше шести и точно меньше числа Грэма, в этом и заключается математическое доказательство Рональда Грэма.

А теперь определение того, что я расписал на несколько абзацев, сухим и скучным (зато емким) языком математики. Понимать не надо, но не привести его я не могу.

Рассмотрим n–мерный гиперкуб и соединим все пары вершин для получения полного графа с 2n вершинами. Раскрасим каждое ребро этого графа либо в красный, либо в синий цвет. При каком наименьшем значении n каждая такая раскраска обязательно содержит раскрашенный в один цвет полный подграф с четырьмя вершинами, все из которых лежат в одной плоскости?

В 1971м году Грэм доказал, что указанная проблема имеет решение, и что это решение (количество размерности) лежит между числом 6 и неким большим числом, которое позже (не самим автором) было названо в его честь. В 2008м году доказательство улучшили, нижнюю границу подняли, теперь искомое количество размерностей лежит уже между числом 13 и числом Грэма. Математики не спят, работа идет, прицел сужается.

С 70х годов прошло немало лет, были найдены математические задачи в которых проявляются числа и побольше грэмова, но это первое число–монстр так поразило современников, понимающих о каких масштабах идет речь, что в 1980м году его включили в книгу рекордов Гиннесса, как «самое большое число, когда–либо участвовавшее в строгом математическом доказательстве» на тот момент.

Давайте попытаемся разобраться, насколько оно велико. Помните, что самое большое число, могущее иметь физический смысл 10185, а если всю Обозримую Вселенную заполнить кажущимся бесконечным набором мизерных циферок, получим что–то соизмеримое с гуголплексом.

Представляете себе эту громаду? Вперед, назад, вверх, вниз, насколько хватает глаз и насколько хватает телескопа Хаббл, и даже насколько не хватает, до самых далеких галактик и заглядывая за них — цифры, цифры, цифры размером много меньше протона. Существовать такая Вселенная не сможет, тут же в черную дыру схлопнется. Припоминаете, сколько информации можно теоретически уместить во Вселенную?
Число действительно огромно, рвет мозг. Оно не совсем равно гуголпрексу, буду называть его «дохулион». Тааак, разговорчики тут, счетоводец! Только что придумал, почему бы и нет. Количество планковских ячеек в Обозримой Вселенной, и в каждой ячейке записана цифра. Число содержит 10185 цифр, его можно изобразить как 1010185.

дохулион = 1010185

Продолжаем набирать высоту. Помните инфляционную теорию? Что наша Вселенная лишь одна из многих пузырьков Мультивселенной. А если представить дохулион таких пузырьков? Возьмем число, длиною со все сущее и представим себе Мультивселенную с подобным количеством вселенных, каждая из которых под завязку исписана цифрами — получим дохулион дохулионов. Представляете себе такое? Как плывешь в небытии скалярного поля, а кругом вселенные–вселенные и в них цифры–цифры–цифры… Надеюсь, подобный кошмар (хотя, почему кошмар?) не будет мучить (и почему мучить?) излишне впечатлительного читателя по ночам.

Для удобства назовем подобную операцию «флип». Такое несерьезное слово–междометие, как–будто взяли Вселенную и вывернули наизнанку, то она была внутри в цифрах, а теперь наоборот у нас снаружи столько вселенных, сколько было цифр, и каждая полным–полна коробочка, сама вся в цифрах. Как будто гранат чистишь, корочку так отгибаешь, внутри зернышки, а в зернышках гранаты, почему бы и нет. Честно, тоже на ходу придумалось, с дохулионом ведь прокатило.

К чему я клоню? А стоит ли останавливаться? Хопа, и еще один флип! И вот у нас столько вселенных, сколько было цифр во вселенных, количество которых было равно дохулиону цифр, заполнявших нашу Вселенную. И еще раз флип. И четвертый, и пятый. Успеваете за мыслью, все еще представляете себе картину?

Не будем мелочиться, разгоняемся по полной и флипаем флип флипов. Столько раз выворачиваем каждую вселенную наизнанку, сколько дохулионов вселенных было в предыдущем флипе, который флипал из позапрошлого, который… эээ… ну, вы следите? Где–то так. Пусть теперь число станет, предположим, «дохулиард».

дохулиард = флип флипов

Не останавливаемся и продолжаем флипать дохулионы дохулиардов до тех пор пока есть силы. Пока в глазах не темнеет, пока не захочется кричать. Тут каждый сам себе отважный Буратина, стоп–слово будет «брынза».

Так вот. Все эти дохулионы флипов и дохулиарды вселенных полных цифр не идут ни в какое сравнение с числом Грэма. Даже не скребут по поверхности. Если число Грэма представить в виде палки, растянутой по традиции во всю Обозримую Вселенную, то, что мы тут с вами нафлипали окажется засечкой толщины… ну… как бы это так, помягче выразить… недостойной упоминания. Вот, смягчал, как мог.

Теперь давайте немного отвлечемся, передохнем. Мы читали, мы считали, наши глазоньки устали. Забудем про число Грэма, до него еще ползти и ползти, расфокусируем взгляд, расслабимся, помедитируем на гораздо меньшее, прямо–таки миниатюрнейшее число, которое назовем g1, и запишем всего шестью знаками:

g1 = 3↑↑↑↑3

Число g1 равно «три, четыре стрелочки, три». Это что такое, что это значит? Так выглядит способ записи, называемый стрелочная нотация Кнута.

Для подробностей и деталей можно почитать статью в Википедии, я коротенько перескажу ее простыми словами.

Одна стрелочка означает обыкновенное возведение в степень.

2↑2 = 22 = 4
3↑3 = 33 = 27
4↑4 = 44 = 256
10↑10 = 1010 = 10 000 000 000

Две стрелочки означают, что понятно, возведение в степень степени, но не очевидные хитрости поджидают нас тут как тут.

2↑↑2 = 2↑2↑2 = 222 = 24 = 16

3↑↑3 = 3↑3↑3 = 333 = 327 = 7 625 597 484 987 (больше 7 триллионов)

3↑↑4 = 3↑3↑3↑3 = 3333 = 37 625 597 484 987 = число, в котором около 7 триллионов цифр

3↑↑5 = 3↑3↑3↑3↑3 = 33333 = 337 625 597 484 987 = 3 в степени числа, в котором 7 триллионов цифр
Короче говоря, «число стрелочка стрелочка другое число» показывает, какая высота степеней (математики говорят башня) выстраивается из первого числа. 5↑↑9 означает башню из девяти пятерок и настолько велико, что не может быть рассчитано ни на каком современном компьютере, даже на всех компьютерах планеты одновременно.

Переходим к трем стрелочкам. Если двойная стрелочка показывала высоту башни степеней, то тройная, казалось бы, укажет «высоту башни высоты башни»? Какой–там! Так будет только если стрелочки заканчиваются на 2, скажем 3↑↑↑2. Если они заканчиваются на 3, мы имеем высоту башни высоты башни высоты башни (в математике такого понятия нет, я решил назвать его «безбашней»). Как–то так:

Самое большое число или "Число Грэма" на пальцах

То есть 3↑↑↑3 образует безбашню из троек, высотой в 7 триллионов штук. Что такое 7 триллионов троек, поставленные друг на друга, именуемые мною «безбашней»? Если вы внимательно читали этот текст и не уснули в самом начале, вероятно помните, что от Земли до Сатурна 100 триллионов сантиметров. Тройка, показанная на экране двенадцатым шрифтом, вот эта — 3 — высотой миллиметров пять. Значит безбашня из троек протянется от вашего экрана… ну, не до Сатурна, конечно. Даже до Солнца не дотянется, всего четверть астрономической единицы, примерно как от Земли до Марса в хорошую погоду. Обращаю внимание (не спать!), что безбашня это не число длиной от Земли до Марса, это башня степеней такой высоты. И мы помним, что первые пять троек в этой башне покрывают число гуголплекс, вычисление первого дециметра сжигает все предохранители компьютеров планеты, а остальные миллионы километров троек уже просто в открытую насмехаются над читателем.

Теперь понятно, что 3↑↑↑4 = 3↑↑3↑↑3↑↑3 = 3↑↑3↑↑7 625 597 484 987 = 3↑↑безбашня, (не 3 в степени безбашни, а «три стрелочка стрелочка безбашня»(!)), она же безбашня безбашни не влезет ни по длине ни по высоте в Обозримую Вселенную, и даже в предполагаемую Мультивселенную.

На 3↑↑↑5 = 3↑↑3↑↑3↑↑3↑↑3 заканчиваются слова, а на 3↑↑↑6 кончаются междометия, но можете потренироваться, коль есть интерес.

Переходим к четырем стрелочкам. Как вы уже догадались, тут безбашня на безбашне сидит, безбашней погоняет, и хоть с башней, что без башни — все равно. Просто молча приведу картинку, раскрывающую схему вычисления четырех стрелочек, когда каждое число башни степеней определяет высоту башни степеней, определяющую высоту башни степеней, определяющую высоту башни степеней… и так до самозабвения.

Самое большое число или "Число Грэма" на пальцах

Расчитывать его бесполезно, да и не получится. Количество степеней здесь не поддается осмысленному учету.

Самое большое число или "Число Грэма" на пальцах, где количество троек в каждой башне, указывается предыдущей башней.

Вот, что такое число g1, вот что такое 3↑↑↑↑3.

Передохнули? Теперь от g1 с новыми силами возвращаемся к штурму числа Грэма. В g1 четыре стрелки между тройками. И мы уже знаем, что может скрываться за этой нарочитой невинностью. А представляете себе пять стрелок? Шесть? Семь? Миллион? Если представляете, позвольте предложить вашему вниманию число g2, в котором количество этих стрелок оказывается равно g1. Помните, что такое g1, да?

Самое большое число или "Число Грэма" на пальцах

Все, что было написано до сих пор, все эти расчеты, степени и башни не помещающиеся в мультивселенные мультивселенных нужны были только для одного. Чтобы указать КОЛИЧЕСТВО СТРЕЛОК в числе g2. Тут уже не нужно ничего считать, можно просто рассмеяться и махнуть рукой.

Не буду скрывать, есть еще g3, в котором g2 стрелок. Кстати, все еще понятно, что g3, это не g2 «в степени» g2, а количество безбашен, определяющих высоту безбашен, определяющих высоту… и так по всей цепочке вниз до тепловой смерти Вселенной. Здесь можно начинать плакать.

Ведь совершенно верно. Есть число g4, в котором содержится g3 стрелочек между тройками. Есть еще g5, есть g6, g7, g17, g43.

Короче их 64 штуки этих g. Последнее g64 и есть число Грэма, с которого все так целомудренно начиналось. Это число размерностей гиперкуба, которого точно будет достаточно, чтобы правильно раскрасить отрезки красным и синим цветами. Может и меньше, это, так сказать, верхняя граница. Его записывают следующим образом:

Самое большое число или "Число Грэма" на пальцах а расписывают так:

Самое большое число или "Число Грэма" на пальцах

Все, теперь можно расслабиться по–честному. Нет больше необходимости ничего представлять и рассчитывать. Если вы дочитали до этого места, уже как бы все должно встать на свои места. Или не встать. Или не на свои.

Да, опытный читатель с прокачанными предохранителями, не нужно упреков, вы абсолютно правы. Число Грэма — надуманная и высосанная из пальца фигня. Все эти безразмерные гиперкубы и абстрактные плоскости, дьявол их раздери, кому они нужны? Где килограммы, где электроны, где то, что можно измерить? Что за пустые разглагольствования ни о чем? Соглашусь. Можно сказать, что сегодняшний пост на пальцах™ максимально, на сколько это было возможно, далек от реальной науки, почти весь целиком парит в каких–то заумных математических фантазиях, в то время как ученым не хватает денег на приборы, не решена мировая энергетическая проблема, а у кого–то все еще туалет во дворе. А у кого и в поле.

Но знаете, есть такая теория, тоже весьма эфемерная и философская, может слышали — все, что человек мог себе представить или вообразить обязательно когда–нибудь воплотится.

Истории развития человеческой цивилизации 10 000 лет. Самому человечеству всего 10 000 лет, хотя отдельному человеку в виде прямоходящей обезьяны без хвоста дают 4 миллиона. Все эти 4 миллиона лет спустившаяся с деревьев обезьяна училась держать палку и добывать огонь. Только десять тысяч лет назад появилось какое–то первое подобие общества, человек вышел из пещеры и начал строить дома и деревни. Человек того времени (уже довольно цивилизованный по современным меркам) не мог считать дальше сотни тысяч (а нечего было считать больше такого количества) и не имел понятия о среднем арифметическом и не знал суммы квадратов катетов. Этого великого открытия нужно было дождаться много веков, не одну тысячу лет. 4000 лет назад человек был уверен, что молнии в небе происходят лично от Зевса, 2000 лет назад считал, что можно развести руками воды моря, стоит только заручиться поддержкой влиятельной особы, тогда как родственные узы дадут способность ходить по воде. 500 назад человек доказал, что Земля круглая, 400 — что вертится вокруг Солнца, 200 лет назад узнал о свойствах пара приводить в движение мертвый металл, а около 100 лет назад был уверен, что полеты на аппаратах тяжелее воздуха невозможны. 70 лет назад человечество догадалось, как расщепить атом, 50 лет назад вышло в открытый космос, а еще через 5 открыло для себя число Грэма. 20 лет назад мы увидели самую далекую, одну из самых первых сформировавшихся после Большого Взрыва галактик и тогда же примерно запустили общемировую информационную сеть, выведя цивилизацию на следующий качественный уровень развития. Десять лет назад к этой сети подключилась половина населения планеты.

Никто не знает, что ждет нас в будущем. У человеческой цивилизации есть тысячи способов закончиться: ядерные войны, экологические катастрофы, смертоносные пандемии, астероид какой может прилететь, динозавры не дадут соврать. Развитие человечества может остановиться само собой, вдруг есть такой закон, что по достижению определенного уровня развитие просто прекращается и все. Или прилетят представители межгалактического союза и остановят это развитие силой.

Но есть все–таки, и не маленький, шанс, что развитие человечества продолжится без остановки. Пусть даже не такое головокружительно быстрое, как в последние 100 лет, главное, что движение вперед, главное, что поступательное.

200 лет назад ковер–самолет (обычный самолет), волшебное зеркало (скайп–видео) или тридевятое царство (поверхность планеты Марс) казались несбыточной сказкой, 2000 лет назад было полагалось только богам, 20 000 лет такого вообще представить не могли, способностей воображения не хватало. Вы можете себе представить, что будет доступно человеку через 200 лет? Через 2000, через 20000 лет? У природы есть один закон, известный нам с самой давней древности. Как бы ни было, что бы ни случилось, но время никуда не денется, оно пройдет. Хотим мы этого или не хотим — пройдут и тысяча и 10 тысяч лет.

Выживет ли человечество, будет ли это вообще человечество с приставкой «чело–», а может к тому времени и этап Искусственного Интеллекта закончится, порождая какие–то эфирные энергетические сущности особой категории осознанности.

А если пройдет миллион лет? А ведь он пройдет, куда денется. Считаю, что число Грэма, и вообще все, о чем человек только способен задуматься, представить, вытащить из небытия и сделать пусть не осязаемой, но имеющей какой–то смысл вещью — обязательно когда–нибудь воплотится. Просто потому, что сегодня у нас хватило сил развиться до способности осознания подобного.

Сегодня, завтра, когда будет возможность — запрокиньте голову в ночное небо. Помните этот момент ощущения собственной ничтожности? Чувствуете, какой человек крошечный, пылинка, атом по сравнению с безбрежной Вселенной, которая звезд полна, коим числа нет, ну, и бездна, соответственно, тоже не маленькая.

В следующий раз попробуйте ощутить, какая Вселенная песчинка по сравнению с тем, что происходит в голове. Я верю, что через какое–то время человек дотянется до числа Грэма, дотронется до него рукой, или что у него к тому времени будет вместо руки. Это не обоснованная, научно доказанная мысль, это действительно всего лишь надежда, то, что меня воодушевляет. 

источник

Найти среднюю скорость междугороднего автобуса

Междугородний автобус проехал расстояние между двумя городами со скоростью 60 км/ч. Обратный путь он проехал со скоростью 40 км/ч.

Найдите среднюю скорость автобуса.

Ответ

48 км/ч. Решение: простое деление на два сумму скоростей 60 и 40 не дает правильный результат, т.к. время движения автобуса в одну и в другую сторону отличается. Обозначим среднюю скорость через «х», а расстояние между городами «у». Из условия задачи получим уравнение: (2у : х) = (у/69 + у/40). Делим обе части уравнения на «у», получим: (2/х) = (1/60 + 1/40), откуда х = 48. 

источник

Математическая задача

Не используя калькулятора, определите, что больше: 351х354 или 352х353.

Ответ
352х353 больше, чем 351х354. Здесь минимум два варианта решения. Первый: всем известно, что площадь квадрата является максимально возможной из всех вариантов прямоугольников с одинаковой суммой сторон А и В. В данном примере, по аналогии, сумма чисел также равна в обоих случаях (352 + 353 = 351 + 354). При этом ближе «к сторонам квадрата» будет вторая пара чисел (352 и 353). Второй вариант решения: необходимо каждое из двух выражений поделить на 353х351 . Получим 354/353 и 352/351. Или 1+1/353 и 1+1/351 . Очевидно, что второе число больше.

Один поезд выехал из города №1 в город №2 со скоростью 40 км/ч. Навстречу ему выехал другой поезд, идущий из города №2 в город №1 со скоростью 60 км/ч. Оба они идут без остановок с постоянной скоростью. На каком расстоянии друг от друга будут эти поезда за 1 час до их встречи?

Ответ
Очевидно, что за 1 час первый поезд проедет 40 км, а второй 60км. В итоге 100км. Но иногда эту задачу начинают решать не верно.

У троих студентов была небольшая куча конфет. Они ее поделили поровну на 3 равные части. После того, как каждый из них съел по 4 конфеты, то у них вместе стало столько конфет, сколько было у каждого после дележа. Сколько конфет было у студентов до дележа?

Ответ Решение: после дележа студенты съели 12 конфет, после чего у них стало столько конфет, сколько было у одного после дележа, т.е. число конфет уменьшилось в 3 раза. Иными словами, студенты съели 2 части, а осталась одна часть конфет. Две части равно 12шт, отсюда, одна часть равна 6шт. Следовательно, до дележа у студентов было 18 конфет.
источник

Саймон Флегг и дьявол

Среди всех загадок, какие только знала история, най­мется не так много, пожалуй, тех, что напрямую свя­заны с математикой.

Эта наука располагает массой подчас неразрешимых задач, сложный язык ее формул зачас­тую пугает. Исключение представляет лишь великая теорема Ферма, о которой многие наслышаны. Она предельно проста, доступна для понимания любого человека, включая такого, который совершенно не любит математику. А главное, это единственная теорема, удостоенная чести быть положенной в основу сюжета фантастического рассказа. Среди множества произведений американского фантаста А. Порджесса рассказ «Саймон Флегг и дьявол» занимает особое место. На сегодняшний день это единственное литературное сочинение, прославляющее математику. Перед читателем раскрывается все величие и прекрасная в своей сложности гармония математи­ческой науки. Плоды многотысячелетнего труда армии математиков оказываются настолько внушительными, что просто недоступны воображению обывателя. Человек, знакомясь с математикой, словно погружается в иную Вселенную, измеряемую неевклидовыми, начертательными, сферическими, аналитическими и прочими геометриями. Сюжет рассказа предельно прост. Вымышленный математик С. Флегг задает задачку дьяволу и требует ответ через сутки. Нетрудно догадаться, что задачкой была именно теорема, которую не решил ни один математик.

Выбор автора удачен. Нельзя в более подходящем свете пред­ставить математику, кроме как поведав о таинственной теореме лись доказать теорему на протяжении последних 350 лет! При этом были перепробованы все без исключения разделы матема­тики. Не найдется такой области учения о числах и фигурах, которая не оказалась бы задействована в решении этой задачи.

Более того, попытки доказать теорему привели к созданию новых направлений внутри математики. Не получив ответа на вопрос, математики забрались в такие дебри бесконечного «кос­моса чисел», что вынуждены были создать новые математичес­кие учения. В числе последних теория идеальных чисел, рож­денная уже в XX в. Любопытно, что создатель теоремы живший в первой половине XVII столетия, француз П. Ферма не принад­лежал к числу профессиональных математиков, хотя с его мне­нием считались крупнейшие ученые того времени. С Ферма, состоявшим на государственной службе в министерстве, перепи­сывались выдающиеся математики, многие консультировались у него. Ферма сделал немало замечательных открытий в облас­ти алгебры, многие из его теорем изучаются в программе сред­ней школы, не говоря о вузовских учебных программах.

Интересен и другой факт из научной жизни гениального француза. Ферма сделал почти все свои открытия, опираясь на одну-единственную книгу. Историкам прекрасно известен этот солидный том, так много значивший для развития мате­матических знаний. Этой настольной книгой любителя цифи­ри была «Арифметика» древнегреческого математика Диофанта. Живший в III в. н.э., этот человек являлся без сомнения видней­шим специалистом по арифметике. Даже эпитафию к своему памятнику Диофант, когда почувствовал приближение смер­ти, записал в виде хитроумной задачи. Ферма, перелистывая страницы «Арифметики», как бы вел диалог со своим прославленным предшественником. Время от времени француза что-то подводило к оригинальным мыслям, и он делал заметки прямо на полях книги. В такой форме было записано большинство открытий этого ученого. К сожалению, доказательство своей главной теоремы Ферма на полях книги не записал.

В письме другу он признается, что одно из мест в «Ариф­метике» натолкнуло его на весьма любопытные соображения, и он даже создал занимательную теорему. Но Ферма сокру­шается, что в книге не хватило места, чтобы записать доказа­тельство этой теоремы. И все-таки Ферма уверял в письме, что доказательство им найдено, причем крайне необыкновен­ное. Впоследствии ученые так и не смогли отыскать в запи­сях гениального француза даже намека на доказательство, оно оказалось полностью утраченным для науки.

Впрочем, это мало кого удивило. Множество положений — лемм и теорем, составленных Ферма, были доказаны спустя столетия другими математиками, в первую очередь Л. Эйле­ром. Но вот главную теорему, получившую название вели­кой, никто из последователей Ферма так доказать и не сумел. Хуже того, ученые стали спорить, а существует ли вообще доказательство этого чудного творения. Оттого герой вышеупомянутого рассказа А. Порджесса формулирует свой воп­рос дьяволу именно таким образом: верна или неверна вели­кая теорема Ферма?

Определенного ответа на этот вопрос в настоящее время не существует. Посмотрим, что же представляет собой загадоч­ная теорема. Очевидно, на создание теоремы П. Ферма под­толкнуло учение о пифагоровых тройках, тщательно проана­лизированное у Диофанта в «Арифметике». Пифагор, как известно, доказал геометрическую теорему прямоугольного треугольника, названную впоследствии в его честь.

Она изучается в средней шко­ле и прекрасно всем известна. Теорема гласит, что сумма квад­ратов катетов (малых сторон треугольника) равна квадрату гипотенузы (самой большой его стороне, противолежащей пря­мому углу). Еще Пифагор до­гадался, что в это равенство подходят не какие угодно чис­ла, а только определенным об­разом сочетающиеся.

Греческого мудреца заинтересовало, сколько существует природе натуральных чисел, которые бы удовлетворяли условиям этого равенства. Иными словами, Пифагор стал под­бирать тройки простых целых чисел (таких как 1, 2, 3… 117, 118 и т.д.), сумма квадратов двух из которых дает квадрат третьего. Типичным примером наиболее простой тройки явля­ется группа чисел 3, 4 и 5. Квадрат 3 равен 9, квадрат 4—16, а квадрат 5—25. Сумма 9 и 16 дает 25. Вот почему числа 3, 4 и 5 можно сгруппировать в тройку.

Еще греки создали правила нахождения троек, получивших название пифагоровых. Скорее всего, удивительное сочетание чисел привлекло внимание пытливого математика-любителя, каковым являлся Ферма. Он задался вопросом, а можно ли найти тройки чисел для более высоких степеней. И, размыш­ляя над этим вопросом, неожиданно понял, что таких троек просто не существует. Какими путями великий математик при­шел к этому необычному выводу, не знает никто, и в обозримом будущем ситуация вряд ли прояснится. Видимо, это произош­ло, когда он безуспешно попытался создать правила нахожде­ния троек для более высоких степеней. Зато Ферма с уверенностью утверждал следующее. Нет натуральных чисел, равные степени которых, большие 2, в сум­ме дают такую же степень третьего натурального числа. Так, никто никогда не отыщет два куба от натуральных чисел, чтобы их сумма равнялась кубу от другого натурального чис­ла. Скажем, тройка 3, 4 и 5 распадается, если возвести эти числа в кубы или более высокие степени.

Современные математики с большим трудом доказали, что теорема верна в отношении некоторых степеней. Например, в отношении тех же кубов. Максимальная степень, про которую ученые с полным правом могут сказать, что она подчиняется великой теореме Ферма, это степень с показателем 100 000. Воз­веденные в нее или меньшую степень числа не образуют троек. Доказательства справедливости теоремы по отношению к про­чим, т.е. более высшим, степеням пока не получено.

И все-таки ученые могут предположить, что великая тео­рема на самом деле ошибочна. Ведь создатель так и не смог найти для нее доказательства. Чтобы доказать эту оригиналь­ную теорему в тех ограниченных пределах, в каких это уда­лось сделать современным математикам, пришлось восполь­зоваться методами таких отраслей алгебры и геометрии, ко­торых просто не существовало в XVII в.

Таким образом, у гениального француза не было возмож­ности правильно доказать свою теорему. Однако Ферма утверждает, что нашел это загадочное доказательство. Посколь­ку нет причин заподозрить выдающегося ученого во лжи, ос­тается только предположить, что он допустил какую-то ошиб­ку. То есть Ферма только показалось, что он нашел доказа­тельство, а в действительности теорема так и не была доказа­на. Следовательно, великая теорема Ферма является одним из величайших заблуждений в истории точных наук.

источник