физика

Из чего можно сделать шапку-невидимку?

Виктор Георгиевич Веселаго длительное время занимался экспериментальными исследованиями магнитных веществ и сильных магнитных полей. Но в мировом научном сообществе он стал знаменит в одночасье благодаря одной небольшой, чисто теоретической статье по электродинамике, опубликованной в далеком 1967 году. Он предсказал существование материалов, из которых можно сделать шапку-невидимку.

В начале 2001 года дома у Виктора Веселаго, завлабораторией магнитных материалов отдела сильных магнитных полей Института общей физики РАН (ИОФАН) им. А. М. Прохорова, раздался звонок телефона. «Профессор, — сказал по-английски голос в трубке. — Вас беспокоят из журнала New Scientist. Мы бы хотели получить ваш комментарий по поводу экспериментов американских ученых Смита и Шульца, описанных в только что вышедшем журнале Science. Кажется, им удалось создать материал, который вы теоретически предсказали более тридцати лет назад».

Упражнение для ума

После окончания школы, где он всерьез увлекся радиотехникой, Веселаго поступил на только что созданный физико-технический факультет МГУ (позднее ставший самостоятельным вузом — МФТИ). Диплом он защитил в ФИАН под руководством А. М. Прохорова (будущего лауреата Нобелевской премии 1964 года по физике), а затем продолжил работу в институте уже как научный сотрудник.

В 1960-х годах он заинтересовался магнитными полупроводниками — материалами, которые проявляют свойства как ферромагнетиков, так и полупроводников (их проводимость меняется при изменении магнитного поля). «Есть такой электровакуумный прибор — лампа бегущей волны, он используется в качестве усилителя СВЧ-сигналов, — объясняет профессор Веселаго. — Усиление здесь происходит за счет взаимодействия электронов с электромагнитной волной. Я подумал, что можно было бы попробовать создать такой прибор в твердотельном варианте, а для этого нужен был материал, сильно замедлявший скорость распространения электромагнитной волны, то есть с очень высоким показателем преломления. Показатель преломления (n) определяется как квадратный корень из произведения диэлектрической проницаемости (ε) и магнитной проницаемости (µ). Идея с магнитным полупроводником не оправдала себя (нужный режим работы подобрать не удалось), но заставила меня внимательно рассмотреть вещества с различными ε и µ, и положительными, и отрицательными. Вещества с обеими положительными величинами — это хорошо известные обычные диэлектрики. С положительным ε и отрицательным µ — ферромагнетики. С отрицательным ε и положительным µ — плазма. А вот веществ с отрицательными ε и µ тогда известно не было. Листок с формулой показателя преломления лежал у меня на столе, я смотрел на него и вдруг подумал: но ведь в таком случае и сам показатель преломления может быть отрицательным. И не только с точки зрения математики!».

Против здравого смысла

Такой вывод был крайне необычным, поскольку во всех учебниках подразумевалось, что показатель преломления любой среды — это всегда положительная величина. Своими соображениями, которые показались ему очень важными, Виктор поделился с коллегами. Но ученые, загруженные работой, восприняли его выводы как «разминку для ума», абстракцию, которая не имела никакого физического смысла. И тогда Веселаго написал небольшую статью «Электродинамика веществ с одновременно отрицательными значениями ε и µ», где показал, что наличие таких веществ не противоречит никаким законам физики, и описал их необычные свойства. Материалы с отрицательным коэффициентом преломления в статье были названы «левыми», а обычные, с положительным, — «правыми» (по ориентации векторов, характеризующих электромагнитную волну). «На самом деле мне не первому пришла в голову эта идея, — говорит профессор Веселаго. — Об этом рассуждал еще академик С. Л. Мандельштам, но исключительно в математическом плане. Рассматривал их и Д. В. Сивухин, но в свой знаменитый учебник он эти соображения не включил».

В журнале «Успехи физических наук» (УФН) статью тоже восприняли как гипотетические рассуждения, но тем не менее опубликовали. «Я представил свой доклад на международной конференции в Москве, — вспоминает Виктор Георгиевич, — и получил приглашение выступить по этой теме на нескольких других конференциях — в Италии, Франции и США. После моих докладов на этих конференциях темой заинтересовались, и я подготовил еще одну статью в сборник. Но высокое начальство ФИАН, узнав об этом, настойчиво порекомендовало мне не заниматься всякой ерундой и не отвлекаться от основной работы в отделе сильных магнитных полей, где мы создавали большую экспериментальную установку «Соленоид». В итоге эта тематика была почти забыта на долгие три десятилетия».
 

От теории к эксперименту

Статья «Экспериментальное подтверждение отрицательного показателя преломления» Дэвида Смита, Шелдона Шульца и Ричарда Шелби, исследователей из Калифорнийского университета в Сан-Диего, вышла в 2001 году в авторитетном журнале Science и произвела в научном сообществе эффект разорвавшейся бомбы. В статье исследователи показали, как, используя проводящие дорожки и незамкнутые катушки-резонаторы для управления электрическими и магнитными свойствами среды, можно сконструировать композиционный материал с отрицательным показателем преломления для длины волны около 3 см. Такие составные материалы, свойства которых определяются не их химическим составом, а структурой, называют метаматериалами. А поскольку экспериментаторы уже во втором абзаце статьи ссылались на ту самую статью 1967 года, это окончательно закрепило приоритет изобретения таких материалов за Виктором Веселаго. Интерес к теме был настолько высок, что эта статья стала самой цитируемой за всю историю журнала УФН, который издается с 1918 года.

А в 2006 году один из авторов первой статьи, Дэвид Смит, к тому времени перешедший в Университет Дюка, вместе со своим коллегой по университету Дэвидом Шуригом и физиком Джоном Пендри из Имперского колледжа в Лондоне, опубликовали в Science статью «Управление электромагнитными полями». В ней они показали кольцевую конструкцию из метаматериала с отрицательным показателем преломления, которая заставляет электромагнитные волны огибать предмет, находящийся в центре. А это не что иное, как шапка-невидимка в самом буквальном смысле этого слова. Правда, пока для сантиметрового диапазона, но ведь это только начало.
Свет, радио, звук, прибой

Технология метаматериалов с отрицательным показателем преломления сейчас очень активно развивается. И не только потому, что это интересная наука, но и потому, что результаты в данной сфере могут привести к интересным решениям в прикладных областях. «Публика ждет шапку-невидимку, военные — идеальный камуфляж и невидимую радаром технику, — говорит Виктор Веселаго. — Но я не думаю, что в ближайшее время стоит ожидать чего-то подобного. Зато уже есть ряд очень интересных разработок в области материалов с отрицательным показателем преломления не для электромагнитных, а для сейсмических волн. Достаточно построить такую структуру вокруг здания, и волны, порожденные землетрясением, будут огибать его. А ученые из Института Френеля в Марселе и Ливерпульского университета уже несколько лет разрабатывают метаматериалы такого типа, способные защитить прибрежные сооружения от разрушительных приливных, штормовых волн и цунами. И конечно, моя мечта — это материалы с отрицательным показателем преломления для оптического диапазона, которые сделают реальностью суперлинзы для оптических приборов со сверхвысоким разрешением».
 

«Правые» и «левые»

Из чего можно сделать шапку-невидимку?

Что мы увидим, если посмотрим на материал с отрицательным показателем преломления

Преломление света — привычное явление, хорошо известное всем, кто хоть раз смотрел на игру солнечных лучей на гладкой поверхности пруда. Но вот эффекты, возникающие в среде с отрицательным показателем преломления («левой» среде), сложно представить — настолько они противоречат общепринятым понятиям о поведении света. Вот некоторые из них.

А. Карандаш, погруженный в воду, кажется внешнему наблюдателю «сломанным» в сторону поверхности раздела сред.

Б. Карандаш в «левой» среде кажется «отраженным» от поверхности раздела сред (рыбки, плавающие в такой среде, будут казаться «парящими» над водой).

А. Луч света при преломлении на границе сред находится по разные стороны нормали.

Б. Луч света при преломлении на границе сред находится по одну сторону нормали.

А. Спектр предмета, движущегося от наблюдателя в «правой» среде, смещается в красную область за счет эффекта Доплера.

Б. Спектр предмета, движущегося от наблюдателя в «левой» среде, смещается в синюю область за счет эффекта Доплера.

А. Заряженная частица, движущаяся быстрее скорости света в «правой» среде, порождает черенковское излучение в виде конуса, направленного вперед.

Б. Заряженная частица, движущаяся быстрее скорости света в «левой» среде, порождает черенковское излучение в виде конуса, направленного назад.

А. В «правой» среде фазовая (скорость отдельной волны) и групповая (скорость волнового пакета, переносящего импульс и энергию) скорости света направлены в одну сторону.

Б. В «левой» среде фазовая и групповая скорости света направлены в разные стороны.

А. Среда с положительным показателем преломления («правая»)

Б. Среда с отрицательным показателем преломления («левая»)
Невидимые дома

Из чего можно сделать шапку-невидимку?

Принцип «невидимости», реализуемый с помощью метаматериалов с отрицательным показателем преломления, применим не только в оптике и радиофизике, но и в акустике. Ученые возлагают большие надежды на создание структур, которые могли бы «маскировать» важные сооружения от сейсмических волн при землетрясениях. Эксперименты группы исследователей из Института Френеля и Университета Экс-Марсель показали, что размещение в грунте нескольких регулярных рядов пустотелых цилиндров преломляет и отражает сейсмические волны.
 

Линзы Веселаго

Из чего можно сделать шапку-невидимку?

Материал с ε= -1, μ= -1 и отрицательным показателем преломления n= -1 можно использовать для создания так называемой линзы Веселаго. Плоская пластинка «левой» среды полностью переносит оптическое поле с одной стороны на другую, создавая точное, без всяких искажений, изображение. У такой линзы, в отличие от обычной, отсутствует оптическая ось. Она не способна сфокусировать параллельный пучок света, зато за счет фокусировки ближнего поля через нее можно рассмотреть детали, меньшие по размеру, чем длина волны света (дифракционный предел).

Как работает шапка-невидимка

Из чего можно сделать шапку-невидимку?

Если осветить предмет, сравнимый по размеру с длиной волны, пучком микроволн, мы увидим его за счет отражения части излучения. Но если окружить предмет «шапкой-невидимкой», изготовленной из метаматериала с отрицательным показателем преломления, пучок будет огибать предмет, и он станет полностью невидим. Такой эксперимент был продемонстрирован исследователями из Калифорнийского университета в Сан-Диего.

Из чего можно сделать шапку-невидимку?
источник

Как солнечные затмения влияют на человека

Солнечное затмение — самый величественный природный феномен, доступный жителям Земли.

Веками оно считалось предзнаменованием бед и напастей, но на деле принесло человеку и много хорошего. Интересно также, как затмение влияет на нас. 

 

Начала физики 

В Древнем Китае во время солнечного затмения было принято бить в барабаны, дабы устрашить голодного дракона, пожирающего светило; метод хорош тем, что всегда срабатывал. Патрик Мур. «Астрономия». Наша звезда примерно в четыреста раз больше Луны и почти во столько же раз дальше. Случайная игра мироздания (или, как полагают многие, Промысел Божий) породила диво, недоступное зрителям с поверхности других тел солнечной системы: периодическое прохождение диска спутника точно между светилом и планетой. Мотивация древних учёных исследовать этот феномен была как никогда высока: в императорском Китае придворный астролог за ошибку в расчётах даты очередного светопреставления мог поплатиться жизнью. Наблюдения за движением небесных тел, попытки предсказать будущие затмения, выявив законы небесной механики, и легли в основу астрономии, благодаря которой были открыты многие постулаты физики. Причём не только классической ньютоновской, но и современной: в 1919 году экспериментальная проверка Общей теории относительности, разработанной Эйнштейном четырьмя годами ранее, состоялось именно во время полного затмения. Величина искривления в гравитационном поле Солнца проходящих вблизи него световых лучей других звёзд (в обычной ситуации не видимых за ярким блеском светила) практически совпала с расчётной. 

 

Помощник историка 

«Тогда Игорь воззрел на светлое солнце, и вид от него покрыл воинов тьмою…». «Слово о полку Игореве». Находись Луна, Земля и Солнце в одной плоскости, затмения происходили бы при каждом новолунии. Однако орбита естественного спутника наклонена по отношению к земной под углом около 5°, и, вдобавок, является не округлой, а эллиптической, поэтому полное исчезновение светила в одной и той же местности происходит лишь раз в 200-300 лет. Что открывает для историков прекрасную возможность, опираясь на неизменные законы небесной механики, точно датировать то или иное событие: светопреставление во все времена было явлением неординарным, и хронисты о нём обязательно упоминали, особенно если за знамением следовали великие потрясения. Вот почему одним из первых событий русской истории, датированным с точностью до суток, является знаменитый поход Игоря Святославича на половцев. Затмение, отмеченное во многих летописях и в «Слове о полку Игореве», 1 мая 1185 года покрыло тенью огромные евразийские пространства от Великого Новгорода до Южного Урала. Для Северского Донца, где тогда находилась княжеская дружина, величина покрытия солнца составила около 0,8. Как нетрудно понять, по обе стороны от зоны полного затмения оно воспринимается наблюдателями в виде частичного или кольцеобразного.

 

 Береги глаза 

«Вероятность густой облачности прямо пропорциональна расстоянию, на которые вы уезжаете, чтобы увидеть солнечное затмение». Законы Мерфи. 

 

Ежегодно солнечные затмения происходят от 2 до 5 раз, из которых не более двух являются полными или кольцеобразными (когда Луна отстоит от Земли «дальше, чем нужно», и видимого диаметра диска не хватает для стопроцентного покрытия). В среднем каждый век случается 237 затмений, из коих лишь порядка трети — полные. Однако поскольку большую часть поверхности планеты занимают океаны или малонаселённая суша, увидеть такой феномен — задачка не из лёгких. Но что делать, если вы всё-таки попали в лунную тень? Взгляд на Солнце в окуляр телескопа, бинокля или камеры (до наступления фазы полного затмения) может привести к необратимой потере зрения! Обычные чёрные очки тоже не помогут безбоязненно узреть светило во время касания Луны: здесь нужен светофильтр, аналогичный маске сварщика. Публикуемые кое-где советы о самостоятельном изготовлении противосолнечных фильтров из старой фотоплёнки следует воспринимать с осторожностью: защищает глаза именно слой серебра на проявленной чёрно-белой плёнке (наносимый далеко не на все её марки), да и в век цифрового фото эти милые реликты вышли из широкой продажи… Впрочем, саму фазу полного затмения, когда видна корона Солнца, можно безбоязненно наблюдать невооружённым глазом. Если светопреставление застало вас за рулём, имеет смысл остановиться и переждать, благо, максимальная продолжительность явления — не более 8 минут, а обычно — гораздо меньше. 

 

Не во вред здоровью

 «Как появится — прячемся, а без него — плачемся». 

Народная загадка о Солнце. 

 

Считается, что испуганные внезапно наступившей тьмой животные могут впасть в панику, птицы — потерять ориентацию в пространстве и перестать петь. Да и психически неустойчивый человек, особенно если заранее не предупреждён о феномене, испытает нервное потрясение. Впрочем, это именно внешний эмоциональный отклик на нерядовое событие; достоверных сведений о серьёзных помехах нашему здоровью нет (за исключением уже упомянутой опасности повреждения глаз). Во время полного покрытия в августе 2008 года, неофициальной «столицей» которого стал Новосибирск, Геннадий Онищенко (на тот момент — главный государственный санитарный врач РФ) утверждал, что число инсультов и инфарктов во время и после явления не увеличивается. Академическая наука также не отмечает какого-либо влияния на самочувствие человека или функционирование техники: не следует путать затмение и вызываемые солнечной активностью магнитные бури. В то же время ряд медицинских исследований свидетельствуют, что в течение часа после затмения у гипертоников поднимается артериальное давление, сужаются сосуды, сердце бьётся учащённо. Впрочем, вызваны ли эти эффекты влиянием феномена, или общим волнением пациента, подогреваемым давними суевериями, сказать пока сложно. В конце концов, согласно канонам восточной медицины, Солнце посылает нам положительную энергию, а Луна, наоборот, её забирает. Вдобавок, во время затмения эти два небесных тела оказываются на одной линии, их гравитационное влияние на Землю максимально, мощь океанских приливов и отливов достигает пика. Так что светопреставление определённо влияет на эмоциональных и метеозависимых людей. Не даром и врачи, и астрологи советуют не предпринимать ничего значительного и избегать физической активности в соответствующие дни. 

 

Как солнечные затмения влияют на человека

Дар Гелиоса 

«Лучший спецэффект в моей жизни». Артемий Лебедев, очевидец полного затмения 2008 года в Новосибирске. 

 

При фазе полного затмения с Земли в оптическом диапазоне можно видеть хромосферу, или, как её поэтически называют, корону Солнца, не различимую в обычных условиях. Одним из первых такое научное наблюдение произвёл Пьер Жансен, в затмение 18 августа 1868 года направивший спектроскоп на солнечный протуберанец. Очень скоро французский астроном заметил спектральную линию нового, дотоле неизвестного химического элемента, впоследствии названного в честь древнегреческого бога Солнца — гелием. Примечательно, что на Земле этот лёгкий газ, один из самых распространённых во вселенной после водорода, был получен лишь в 1895 году, через 27 лет после открытия. 

 

Будущее

 Как известно, орбита Луны постепенно удаляется от нашей планеты. Через миллионы лет Селена станет просто яркой точкой на небосводе, а наблюдать полные затмения с поверхности Земли станет невозможно! Так что нам остаётся лишь радоваться величественной игре природы и ждать: ближайшее стопроцентное затмение над Москвой ожидается 16 октября 2126 года. 

Источник

Иллюзия Вселенной
Почему наш мир выглядит именно так, а не иначе? Как он на самом деле устроен? Почему в нем случается то, что мы называем чудесами, и почему не всегда работают физические законы?

Можно ли научиться управлять реальностью и событиями, которые происходят вокруг нас? Имеется только одна теория, которая все это объясняет: так называемого материального мира попросту не существует…

Что было, когда ничего не было

Над происхождением Вселенной люди задумывались еще в древности. Богословы считали, что она создана Творцом за несколько тысяч лет до нашей эры. Но археологические и палеонтологические находки доказывают, что Земле и жизни на ней по меньшей мере миллионы лет. Гораздо ближе к истине, по-видимому, оказался Аристотель, утверждавший, что Вселенная не имеет ни начала, ни конца и будет существовать вечно…

Долгое время Вселенную считали статичной и неизменной, но в 1929 году американский астроном Эдвин Хаббл обнаружил, что она постоянно расширяется. Следовательно, она не существовала всегда, а возникла в результате каких-то процессов, рассудил он. Так появилась теория Большого взрыва, который миллиарды лет назад породил звезды и галактики. Но если до Большого взрыва ничего не существовало, то что же к нему привело?

Иллюзия Вселенной

В 1960 году физик Джон Уилер разработал теорию «пульсирующей Вселенной».
Согласно ей, Вселенная неоднократно проходила через циклы расширения и обратного сжатия, то есть таких Больших взрывов было за весь период ее истории по крайней мере несколько. Еще одна теория подразумевает наличие протовселенной: сначала должна была появиться материя, а потом уже прогремел Большой взрыв.

Наконец, имеется гипотеза появления Вселенной из квантовой пены, на которую воздействуют колебания энергии. «Пенясь», квантовые пузырьки «раздуваются» и порождают новые миры. Но это опять же не объясняло главного: что существовало до образования какой-либо материи?

Научный парадокс попытались разрешить известные астрофизики Джеймс Хартл и Стивен Хокинг, в 1983 году предложив очередную теорию. Она гласила, что Вселенная не имеет границ и ее структура основана на так называемой волновой функции, определяющей различные квантовые состояния частиц материи. Это делает возможным существование множества параллельных Вселенных с различным набором физических констант.

Нефизическая картина мира

Основной недостаток всех научных моделей формирования Вселенной заключается в том, что до сих пор они строились на так называемой физической картине мира. Но ведь могут иметься и другие миры! Миры, где законы физики не работают.

Мы привыкли, что нас окружает материя − объективная реальность, данная нам в ощущениях. А ведь ощущения-то у каждого свои, индивидуальные! Вспомним того же Платона, который считал, что есть мир идей (эйдосов), а материя суть всего лишь проекция этих идей… Вот мы и подошли к самому главному: нас окружает вовсе не материя, а идеи, образы!

Рассмотрим феномен аутизма. Ребенок, рождаясь, воспринимает окружающий мир именно в виде образов и ощущений, а не в виде совокупности объектов. Со временем он учится видеть мир как целостную картину, устанавливать связи между различными предметами и понятиями.

Иллюзия Вселенной

Аутисты же могут воспринимать действительность, но не могут ее анализировать.
Зато они способны усваивать огромное количество «первичной» информации, что недоступно большинству из нас.

Так, шведка Ирис Юханссон, которая, страдая аутизмом, тем не менее смогла адаптироваться в «нормальном» мире и даже получить профессию педагога и психолога, способна чувствовать так называемую «жизненную энергию». В детстве, живя в крестьянской семье, где держали коров, она всегда видела, кому из телят не суждено выжить.

В юности Ирис работала в парикмахерской и научилась, делая женщинам прически, восстанавливать энергетический потенциал клиенток, если тот был истощен. Клиентки выходили из парикмахерской, ощущая необыкновенный прилив сил. Благодаря этому Ирис стала очень популярным мастером. Обычные же люди на такие чудеса не способны.

Доказательства иллюзии

А как же магия и религия? Восточные философы убеждены, что материальный мир – это иллюзия, майя. Древние славяне делили мир на Явь, Навь и Правь: мир материи, мир духов и мир Высшего Начала, управляющего реальностью. А что, если при помощи определенных ритуалов мы можем воздействовать на реальность?

Любой экстрасенс скажет вам, что при наведении порчи или нетрадиционном лечении человека воздействие идет на уровне энергетики. Но вот конкретный механизм того, что в этот момент происходит, вам не объяснит даже самый продвинутый маг. Ему известно только, что для получения определенного результата нужно провести определенный ритуал.Маг ведь работает с идеями, а не с физической картиной мира.

Иллюзия Вселенной Каким же образом заставить идеи работать на вас? Прежде всего, вы должны осознать тот факт, что существуют параллельные реальности, количество которых, возможно, стремится к бесконечности. И они не «где-то там», а окружают нас. Только мы не замечаем процесса «перехода» из одной реальности в другую. Или замечаем, но воспринимаем это как чудо. Скажем, какая-то вещь исчезла, а потом опять появилась.

Видя что-то необычное, мы тут же принимаем видение за галлюцинацию, в то время как, скорей всего, нам удалось заглянуть в один из многочисленных параллельных миров. Кстати, мы привыкли воспринимать реальность как нечто устойчивое и упорядоченное, но люди с некоторыми мозговыми нарушениями способны видеть ее такой, какова она на самом деле, что обычно воспринимается нами как бред и дает повод покрутить пальцем у виска.

Феномен материализации

Некогда блестящий физик, занимающийся квантовой механикой, Хью Эверетт предположил, что любая мысль или действие приводит к выбору, который формирует так называемую реальность. В то же время «нереализованные» варианты продолжают существовать как бы параллельно.

Например, вы поехали одной дорогой, попали в пробку и опоздали на собеседование по поводу работы, вследствие чего ее не получили. Поехали другой – прибыли на место вовремя, и собеседование прошло успешно. Можно ли «перешагнуть» с одной «ветки» из множества реальностей на другую? Вот этим мы и занимаемся, когда пытаемся наладить свою жизнь.

Очень хорошо это проиллюстрировал Вадим Зеланд в серии своих книг «Трансерфинг реальности». Он поясняет, почему сильные желания часто не сбываются. Если мы чего-то очень сильно хотим, то возникает избыточный потенциал, и реальность начинает восстанавливать равновесие. Недаром существует поговорка: «Хочешь рассмешить Бога – расскажи ему о своих планах».

В последние годы возник ажиотаж вокруг системы Симорон. В сущности, нам предлагается вариант так называемого позитивного мышления, но с использованием различного рода ритуальных действ. Как это работает? Человек «расшатывает» границы привычной картины мира (симоронисты называют ее ПКМ) и попадает на ту «волну», которая для него более желательна.

Например, симоронисты призывают почаще прыгать в другой мир. Как? Очень просто – спрыгнуть со стула или кровати, сказав себе: прыгаю за новой работой, за новой квартирой, за своей половинкой и так далее.

Материя против хаоса

Но зачем же нам тогда вообще объективная реальность? Не лучше ли пребывать в мире иллюзий, раз ими можно манипулировать как угодно?

Дело в том, что материальный мир − это своего рода защита от хаоса. Представьте, что вы находитесь на крохотном островке посреди бескрайнего моря. У вас, по крайней мере, твердая почва под ногами, а если вы броситесь в волны, то они понесут вас неведомо куда.

Иллюзия Вселенной

Скорее всего, когда-то люди действительно видели мир таким хаотичным, каким он является на самом деле. И сами создали так называемую физическую реальность, чтобы избежать нежелательных метаморфоз. В сущности, подобная теория объясняет все: и НЛО, и появление призраков, и телепатию, и ясновидение… Ведь в «истинном» мире не существует границ, и в нем может происходить все что угодно.

Но если наш мир иллюзорен, то должно быть некое первичное начало, породившее его. В этом и заключается загадка Бога. Если все это действительно обстоит так, то кто же создал его самого? Вряд ли найдется хотя бы один ученый или философ, который сможет ответить на этот вопрос, так как, скорее всего, нашему ограниченному сознанию попросту не дано осмыслить ответ.

источник

Что такое горизонт событий, или как вырваться из черной дыры

Изучением черных дыр всерьез физики занялись не так давно — хотя сама концепция их существования появилась еще в позапрошлом веке.

Но идея присутствия где-то в космосе таких объектов казалась настолько фантастической и недоказуемой, что практически не рассматривалась всерьез. В новом выпуске рубрики «Просто о сложном» — рассказ об истории открытия «застывших звезд» и о том, что происходит с пространством и временем на границах черной дыры.

Долгая история неверия

В 1783 году священник из английской деревни Торнхилл Джон Митчелл представил в журнал «Философские труды Лондонского Королевского общества» свою статью. В ней он писал, что достаточно массивная и компактная звезда будет иметь столь сильное гравитационное поле, что свет не сможет уйти от нее далеко — он будет затянут обратно за счет гравитационного притяжения. Митчелл считал, что таких объектов в космосе может быть очень много, но увидеть их невозможно — так как их свет поглощается ими же. Тем не менее теоретически их гравитационное притяжение можно обнаружить. Статья не вызвала ажиотажа в научном сообществе и прошла практически незамеченной.
Спустя несколько лет французский ученый Пьер-Симон Лаплас, незнакомый с работой Митчелла, выдвинул схожую гипотезу. Он опубликовал ее в своем труде «Система мира», однако после второго издания теория из книги исчезла — по всей видимости, Лаплас решил, что о такой дурацкой идее и говорить не стоит.

А вот в XIX веке ученым уже не могла прийти в голову мысль о невидимых звездах. Все дело в том, что ньютоновское убеждение относительно того, что свет состоит из частиц, вышло из моды. Ученые пришли к выводу, что концепция, согласно которой свет — это волна, лучше описывает явления окружающего мира. О том, как гравитация действует на волны, ничего известно не было, стало быть, и рассуждения о небесных объектах, «затягивающих» собственный свет, пришлось забыть.

Вновь вспомнили о них только в XX веке. В 1916 году, практически сразу после публикации Эйнштейном общей теории относительности, Карл Шварцшильд описал «застывшую звезду», как тогда называли такие объекты, не рассматривая процесс ее зарождения, а в 1939 этот недостающий элемент в теорию добавили Роберт Оппенгеймер и Хартланд Снайдер. И только 1969 году американский физик Джон Уилер придумал термин «черная дыра» (Уилер вообще был романтиком, и второй придуманный им термин, «кротовая нора», еще более любим фантастами).

Загробная жизнь звезды

Жизненный цикл звезды чем-то похож на человеческий — она рождается и умирает. Вначале огромное облако газа (преимущественно водорода) в космосе начинает сжиматься под воздействием собственной гравитации, его молекулы все чаще сталкиваются друг с другом, и их скорости увеличиваются. Газ разогревается, и при определенной температуре возникает реакция термоядерного синтеза, в результате которой образуется гелий. В ходе реакции выделяется тепло и излучается свет. Так возникает звезда. Тепло создает дополнительное давление, которое уравновешивает гравитационное притяжение, и звезда перестает сжиматься — в стабильном состоянии она может существовать более миллиона лет. Но рано или поздно запасы реагирующего водорода у звезды иссякают, и она начинает остывать и сжиматься.

Тут сравнение с человеческой жизнью заканчивается, потому что дальнейшая судьба светила зависит от его массы. Из небольших звезд получаются белые карлики, объекты с плотностью в сотни тонн на кубический сантиметр. В космосе их обнаружено довольно много, и наше Солнце со временем пополнит их ряды. Из более крупных светил образуются нейтронные звезды. Их размер куда меньше, чем у белых карликов, зато плотность составляет сотни миллионов тонн на кубический сантиметр.
И, наконец, если масса звезды достаточно велика, то образующаяся нейтронная звезда под воздействием гравитации сжимается все сильнее и сильнее, пока не станет черной дырой.

Выхода нет

Одним из важнейших достижений Эйнштейна было открытие природы гравитации. Ученый показал, что она, по сути, является искривлением пространства. Под воздействием массивных объектов оно «проминается», как натянутая эластичная ткань, на которую положили тяжелый предмет. Продолжая это сравнение, можно сказать, что точно так же в виде тяжелого шара можно представить и Солнце, а Земля, будучи значительно более мелким шариком, не притягивается к нему, а всего лишь вращается в получившейся воронке (с той только разницей, что настоящий шарик со временем скатился бы вниз).

Так же можно представить и рождение черной дыры — шар на натянутой эластичной ткани становится все более маленьким и плотным, и ткань все сильнее прогибается под его весом, пока наконец он не становится настолько маленьким, что она просто смыкается над ним и он пропадает из поля зрения. Примерно так происходит и в реальности: пространство-время вокруг звезды свертывается, и она пропадает из Вселенной, оставляя в ней лишь сильно искривленную область пространства-времени. В самой же черной дыре искривление пространства-времени становится бесконечным — такое состояние физики называют сингулярностью, и в нем нет ни пространства, ни времени в нашем понимании.
Из-за происходящего искривления лучи света, идущие от звезды, меняют свои траектории. Если представить себе эти лучи как конусы, вершина которых — у звезды, а «подошва» — это круг расходящегося света, то можно сказать, что в процессе коллапса эти конусы постепенно все больше наклоняются внутрь, к звезде. Наблюдателю, смотрящему на этот процесс, будет казаться, что свечение становится все более тусклым и красным (это потому что красный свет имеет наибольшую длину волны). В конце концов искривление (то есть гравитационное поле) станет настолько сильным, что ни один луч света не сможет выйти наружу. Согласно теории относительности, ничто не может двигаться быстрее света, и это означает, что начиная с этого момента ничто не может выбраться за пределы этого гравитационного поля. Эту область пространства, из которой нет выхода, и называют черной дырой. Ее граница определяется по траектории тех световых лучей, которые первыми потеряли возможность выйти наружу. Она называется горизонтом событий черной дыры — так же как, глядя из окна, мы не видим, что находится за горизонтом, так и условный наблюдатель не может понять, что происходит внутри границ невидимой мертвой звезды.

На самом деле все не так

Убеждение, что ничто не может покинуть черную дыру, было незыблемым до 70-х годов XX века. А в 1974 году Стивен Хокинг предположил, что черные дыры в результате квантовых процессов все же излучают разнообразные элементарные частицы, преимущественно фотоны. В 2010-х годах разные группы ученых в лабораторных условиях подтвердили его предположение. При этом в природе такого излучения пока не было обнаружено, как, впрочем, и самих черных дыр — Нобелевская премия за их открытие еще ждет своего счастливчика.

источник

Афоризмы о физике

Науки делятся на две группы — на физику и собирание марок.

Эрнест Резерфорд
***
Существует лишь то, что можно измерить.
Макс Планк
***
Когда видишь уравнение Е = mс2, становится стыдно за свою болтливость.
Станислав Ежи Лец
***
Эйнштейн объяснял мне свою теорию каждый день, и вскоре я уже был совершенно уверен, что он ее понял.
Хаим Вейцман в 1929 г.
***
Если бы я мог упомнить названия всех элементарных частиц, я бы стал ботаником.
Энрико Ферми
***
Господь Бог не играет в кости.
Альберт Эйнштейн о «принципе неопределенности» в квантовой механике
***
Господь Бог изощрен, но не злонамерен.
Альберт Эйнштейн
***
Господь не только играет в кости, но к тому же забрасывает их порою туда, где мы их не можем не увидеть.
Стивен Хокинг
***
Не наше дело предписывать Богу, как ему следует управлять этим миром.
Нильс Бор
***
Во всем виноват Эйнштейн. В 1905 году он заявил, что абсолютного покоя нет, и с тех пор его действительно нет.
Стивен Ликок
***
Я физик и имею право на сохранение энергии.
Хуго Штейнхаус
***
Энергия любит материю, но изменяет ей с пространством во времени.
Славомир Врублевский
***
Если оно зеленое или дергается — это биология. Если воняет — это химия. Если не работает — это физика.
«Краткий определитель наук»
***
Два элемента, которые наиболее часто встречаются во Вселенной, — водород и глупость.
Фрэнк Заппа

источник

Теория Эйнштейна: применение в жизни

Обычно о теории относительности Эйнштейна думают как о некой абстрактной, мистической математической теории, никак не связанной с повседневной жизнью. Это совсем не так.

Почти все из нас, так или иначе, используют навигационную систему GPS. Это может быть автомобильный GPS-навигатор с цифровыми картами или GPS-навигатор, встроенный в смартфон, который показывает наше местоположение (широту, долготу, высоту) с точностью от 5 до 10 метров.

Текущая конфигурация GPS состоит из 24 спутников, вращающихся вокруг Земли на высоких орбитах. Каждый спутник в «созвездии» GPS летает на высоте порядка 20 тысяч километров над землей, его орбитальная скорость порядка 14 тысяч километров в час. Орбиты спутников распределены так, что в любой момент времени, по крайней мере, четыре спутника видимы с любой позиции на Земле. Каждый спутник несет на своем борту атомные часы, которые «тикают» с точностью до одной наносекунды (одна миллиардная секунды). Этим достигается замечательная точность: даже простенький карманный GPS-приемник может определить вашу абсолютную позицию относительно поверхности Земли с точностью от 5 до 10 метров всего за несколько секунд. GPS-приемник в машине и вовсе может получать точные значения местоположения, скорости и направления в реальном времени.

Для достижения такой точности сигналы времени, поступающие со спутников GPS, должны быть известны с точностью 20-30 наносекунд. Однако из-за постоянного движения спутников относительно наблюдателя на Земле, для достижения желаемых 20-30 наносекунд погрешности, необходимо учитывать эффекты, предсказываемые общей и специальной теорией относительности.

Так как наблюдатель на земле видит спутники в движении, специальная теория относительности (СТО) утверждает, что мы должны видеть, будто их часы отсчитывают время медленнее. СТО говорит, что бортовые атомные часы на спутниках должны запаздывать по сравнению с земными примерно на 7 микросекунд в день из-за меньшей скорости хода ввиду релятивистского замедления времени.

Кроме того, спутники находятся на орбитах на большом расстоянии от Земли, где кривизна пространства-времени из-за массы Земли меньше, чем на земной поверхности. Прогноз общей теории относительности (ОТО) в том, что ход часов, расположенных ближе к массивному объекту, будет казаться медленнее, чем тех, что находятся дальше от него. По сути, когда мы наблюдаем за ними с земной поверхности, часы на спутниках кажутся более быстрыми, чем аналогичные часы на земле. Расчеты, опирающиеся на ОТО, показывают, что часы на каждом спутнике GPS должны спешить относительно земных на 45 микросекунд в день.

Комбинация этих двух релятивистских эффектов означает, что часы на борту каждого спутника должны идти быстрее, чем аналогичные часы на земле примерно на 38 (45 — 7 = 38) микросекунд в день. Звучит как маленькая величина, но высокая точность, требуемая в системе GPS, требует наносекундных погрешностей, в то время как 38 микросекунд равны 38 тысячам наносекунд. Если бы эти эффекты не были приняты в расчет, то координаты, вычисленные на основе облака GPS-спутников, были бы неверными уже через две минуты, а ошибки в глобальных местоположениях продолжали бы накапливаться со скоростью примерно 10 километров в день!

Относительность — не просто какая-то абстрактная математическая теория: понимание ее является необходимым условием правильной работы GPS.

Источник

5 самых крупнейших неразгаданных тайн современной физики

Несмотря на новейшие открытия в области физики, мир по-прежнему полон неразгаданных тайн. На какие вопросы современные учёные всё ещё безуспешно пытаются найти ответы?

1. Что такое тёмная энергия?
Тёмная энергия — это нечто такое, что объяснило бы нам, почему Вселенная продолжает расширяться, несмотря на то, что основная действующая в ней сила — сила притяжения, она же гравитация — этому противодействует.
Тёмная энергия есть некая квинтэссенция — динамическое поле, энергетическая плотность которого может меняться в пространстве и времени.»
На основании наблюдаемых темпов роста Вселенной, учёные делают вывод, что тёмная энергия должна составлять не менее 70% от общего содержания Вселенной. Но по-прежнему непонятно, что это и где это искать.

2. Что такое тёмная материя?
Это довольно парадоксальная штука: форма материи, не испускающая электромагнитного излучения и не вступающая с ним во взаимодействие. Соответственно, её невозможно ни увидеть, ни как-либо наблюдать.
Очевидно, что около 84% материи во Вселенной не поглощает и не излучает свет. Существование и свойства тёмной материи можно вывести из её гравитационного, радиационного и структурного воздействия на Вселенную. Тёмная материя (предположительно) может состоять из слабо взаимодействующих гравитационных частиц, но до сих пор ни один из детекторов не смог обнаружить эти частицы.

3. Почему существует ось времени?
Итак, время движется вперёд: не только по нашим субъективным ощущениям, но и с точки зрения физики. Этот вывод можно сделать на основании свойства Вселенной под названием «энтропия» — меры, определяющей степень беспорядка системы из многих элементов. В нашей Вселенной царит хаос, который постоянно увеличивается: энтропия непрерывно возрастает, говоря научным языком.

Временная ось — это концепция, описывающее время как прямую, протянутую из прошлого в будущее. «Во всех процессах существует выделенное направление, в котором процессы идут сами собой от более упорядоченного состояния к менее упорядоченному.» Следовательно, в далёком прошлом энтропия Вселенной была меньше, в будущем — будет больше. Но почему?..

4. Существуют ли параллельные вселенные?
Параллельные вселенные пришли к нам из мира научной фантастики, но за последние два десятилетия превратились в полноправную научную гипотезу мультивселенной: существования огромного (или даже бесконечного) числа параллельных вселенных.

Квантовая механика позволяет даже предположить их количество. По расчётам, проведённым в 2009-м году физиками Андреем Линде и Виталием Ванчуриным, после Большого взрыва образовалось десять в десятой степени в десятой степени в седьмой степени (10^10^10^7) вселенных. Много. Очень много. Но всё-таки не бесконечно много. Хотя для нас это число действительно равно бесконечности: мозг человека не способен воспринять более десяти в шестнадцатой степени (10^16) битов информации за всю жизнь. В результате получается, что человек не может воспринять более десяти в десятой степени в шестой степени наблюдаемых конфигураций.

5. Почему во Вселенной материи значительно больше, чем антиматерии?
В основе нашего понимания устройства мира лежит понятие вселенской гармонии — как на уровне субъективных ощущений, так и на уровне научных знаний. Соответственно, можно предположить, что после Большого взрыва должно было образоваться равное число частиц и античастиц. Но если бы это случилось, пары частицы-античастицы взаимно поглотили бы друг друга: протоны с антипротонами, электроны с антиэлектронами, нейтроны с антинейтронами и т. д., оставив после себя только скучное бесконечное море фотонов. Однако материи существенно больше, чем антиматерии, что позволяет нам всем, собственно, быть и ломать голову над загадкой: почему же так вышло?
Источник

/blog/43317470634/Obnaruzhenyi-vozmozhnyie-dvoyniki-Zemli/7cc6853d.jpg

Группа астрофизиков из Гарвард-Смитсоновского центра сделала доклад, в котором утверждается, что восемь из только что обнаруженных экзопланет могут являться двойниками Земли.

Экзопланета, рисунок-концепт. © NASA

Максимально похожи на Землю по своим размерам и орбитам две планеты — Kepler 438b и Kepler 442b. Они вращаются вокруг звезд, которые немного меньше и холоднее нашего Солнца, передает телеканал Russia Today.


К настоящему моменту астрономический спутник Kepler, запущенный НАСА шесть лет назад, обнаружил более 4 000 экзопланет. Существование около 1 000 из них официально подтверждено.

Первая экзопланета была обнаружена в 1993 году. Эти землеподобные планеты невероятно разнообразны: некоторые состоят из газа, подобно Юпитеру, другие имеют твердую консистенцию, как Земля. Планеты находятся на разном удалении от своих звезд — от 1 млн до 100 млрд километров.
В 2017 году НАСА планирует запустить в космос аппарат новой миссии TESS — Transiting Exoplanet Survey Satellite («Спутник наблюдения за транзитами экзопланет»). Аппарат будет следить за более чем полумиллионом звезд и отмечать прохождение планет по их дискам в течение 2 лет.

Источник