физика
Глюоны (англ. gluon от glue — клей) — элементарные частицы, являющиеся причиной взаимодействия кварков.
Говоря техническим языком, глюоны — это векторные калибровочные бозоны, непосредственно отвечающие за сильное цветовое взаимодействие между кварками в квантовой хромодинамике (КХД). В отличие от нейтральных фотонов в квантовой электродинамике (КЭД), глюоны сами несут цветовой заряд и, таким образом, участвуют в сильных взаимодействиях, а не только переносят их. Глюон обладает способностью делать это, так как он несёт в себе цветовой заряд, тем самым взаимодействуя с самим собой, что делает КХД значительно более сложной для понимания, чем КЭД.
Глюон — это квант векторного поля в КХД. Он не имеет массы. Как и фотон, он обладает единичным спином. В то время, как массивные векторные (то есть обладающие единичным спином) частицы имеют три состояния поляризации, безмассовые калибровочные бозоны, такие, как глюон и фотон, имеют только две возможные поляризации из-за того, что калибровочная инвариантность требует поперечной поляризации. В квантовой теории поля ненарушенная калибровочная инвариантность требует, чтобы калибровочный бозон был безмассовым (эксперимент ограничивает массу глюона сверху значением не более нескольких МэВ). Глюон обладает отрицательной внутренней чётностью и нулевым изоспином. Он является античастицей самому себе.
Жаль, что не всего его проекты были реализованы
Изображение: www.jeweell.com
Никола Тесла считается великим, но печально известным учёным. Его можно назвать как гением, так и безумцем, но в нестандартном уме и прекрасном воображении ему отказать нельзя. Тесла придумал тысячи гениальных изобретений, но многие из них, в конечном счёте, сочли непрактичными или чересчур опасными.
1. Использование космических лучей
Тесла увлекался идеей свободной энергии. По его замыслу, свободную энергию можно было получить из атомной энергии или энергии лучей — это обеспечило бы почти бесконечные ресурсы с минимальными затратами. Большинство учёных считают идею освоения свободной энергии лженаукой.
Тесла полагал, что если бы он сумел построить рабочую машину для использования этой энергии, то мир навсегда забыл бы об энергетических проблемах. Он считал, что маленькие частицы постоянно движутся вокруг нас быстрее скорости света, и если построить машину, способную улавливать эти частицы, то их можно будет преобразовать в полезную энергию. Он даже получил патент на свою идею, но на практике так её и не воплотил.
2. Электродинамическая индукция
Несмотря на то, что Тесла был первооткрывателем переменного тока, он мечтал о мире без проводов. Он предложил создать Всемирную беспроводную систему, в основе которой будет башня Теслы, транслирующая электроэнергию на весь мир без проводов. Жизнеспособность идеи он доказал, продемонстрировав зажёгшуюся от катушки Теслы лампочку.
Он построил в Нью-Йорке башню Ворденклиф. К сожалению, проекту обрезали финансирование после того, как спонсор узнал, что энергию Тесла хочет раздавать всем бесплатно. Если бы ему дали воплотить идею в жизнь, то у нас могла бы быть система полностью возобновляемой энергии, вдобавок экологически чистой.
Башню в итоге разобрали на металлолом. А недавно учёные из Массачусетского технологического института смогли зажечь лампочку без проводов с расстояния в семь метров, тем самым доказав правоту Теслы.
3. Холодный огонь
Тесла предлагал раз и навсегда отказаться от мыла и воды для мытья. Конечно, вода и электричество не дружат между собой, но микробы с электричеством враждуют ещё больше, чем с водой.
Под воздействием аномалии, известной как «холодный огонь», человеческое тело будет находиться под напряжением быстрого переменного тока в 2,5 млн вольт. При этом человек должен был бы стоять на металлической пластине. А выглядело бы это так, будто человек окутан пламенем.
Метод мог бы быть куда эффективнее, чем традиционные мыло и вода. Тесла также утверждал, что этот способ — ещё и лекарство: он мог бы согреть человека, придать ему заряд бодрости (и ещё какой) и вырабатывать озон. Проект провалился — никто не стал его спонсировать. Учёному вообще постоянно не везло на спонсоров.
4. Тесласкоп
Тесла намеревался создать устройство для связи с инопланетянами. Он утверждал, что с помощью своего тесласкопа несколько раз беседовал с представителями внеземной разумной жизни, но это так никто и не проверил.
По-другому тесласкоп можно использовать как гиперпространственный генератор: он преобразует свободную энергию космических лучей в энергию, которую люди могут использовать. Также он может передавать колоссальное количество энергии через пространство независимо от расстояния.
К сожалению, в общение Теслы с инопланетянами никто всерьёз не поверил — доказательств-то у него не было. Но он продолжал настаивать на своём.
5. Луч смерти
Хотя многие изобретения Теслы могут показаться опасными, сам он ненавидел войну, поэтому потратил много времени и сил на работу над «лучом смерти» — так он надеялся прекратить все войны раз и навсегда. «Луч смерти» работал как ускоритель частиц, способный выстреливать лучом мощных частиц на расстояние свыше 250-ти км. Тесла утверждал, что так можно расплавить любой двигатель и сбить любой самолёт. На создание ускорителя нужно было всего-то $2 000 000.
Его инвестор Д. П. Морган дать на идею денег отказался. Правительства тоже денег не дали, несмотря на все аргументы учёного. Российское правительство, правда, выказало некоторый интерес, и вокруг этого ходит множество слухов — в частности, это одна из версий Тунгусского взрыва.
6. Контроль над погодой
Тесла считал, что температуру на планете можно контролировать, а в любой точке земли можно создать плодородные земли, просто используя определённые радиоволны, чтобы манипулировать магнитным полем Земли в ионосфере и создавать огромные стоячие волны. Затем с помощью волн предполагалось манипулировать ветром, а значит, и погодой.
Тесла получил на свои «погодные» идеи много патентов и якобы доказал, что то, о чём он говорит, работает. Любители теорий заговора считают, что записи Теслы попали не в те руки и используются теперь нехорошими людьми для управления погодой.
7. Пушка на рентгеновском излучении
Уильям Рентген
Тесла был очарован открытием Уильяма Рентгена — рентгеновским излучением. Он начал ставить эксперименты с рентгеновскими лучами и даже устраивал демонстрации для зрителей.
Частенько он проводил опыты совместно со своим другом Марком Твеном — они пытались с помощью направленного пуска рентгеновских лучей повредить бумагу на стене. Хотя в конечном итоге и физик, и писатель признали этот способ невозможным, они весело провели время.
8. Переменный ток
В 1882-м году Тесла переехал в Париж и стал работать на Томаса Эдисона. Эдисон недавно разработал концепцию постоянного тока и полагал, что это решит проблемы всего человечества. Правда, как надо генератор постоянного тока не работал, и Эдисон пообещал Тесле $50 000, если он решит эту проблему.
Свою часть сделки Тесла выполнил — душка Эдисон получил несколько патентов. А вот обещанных денег Тесла так и не увидел. Это вынудило его уйти от Эдисона и основать собственную компанию, где он стал работать над переменным током, который имел ряд значительных преимуществ перед постоянным током.
Томас Эдисон
Эдисон был в ярости — его ученик сам проводит какие-то эксперименты! Он сделал всё возможное, чтобы дискредитировать Теслу с его изобретением, утверждая, что из-за этого будут гореть дома и умирать люди. Но в этот раз идеи Теслы, к счастью, прижились.
9. Освещение мира
А что если бы было возможно осветить весь мир? Ну, как минимум в отсутствии темноты можно было бы уменьшить число крупных катастроф. Именно этого и хотел добиться Тесла, когда начал разрабатывать план по освещению мира. Он хотел использовать люминесценцию разреженного газа — согласно его идеям, определенные частицы газа испускают свечение, когда возбуждаются с помощью энергии.
Тесла планировал нацелить в верхние слои атмосферы ультрафиолетовые лучи, чтобы частицы низкого давления начали освещать всю землю — этакое искусственное северное сияние. Однако планы Теслы никто не поддержал.
10. Осциллятор Теслы
Всё состоит из атомов, и каждый атом начинает вибрировать на определённой частоте. Когда частота колебаний механической системы соответствует частоте вибраций атома, возникает резонанс. Пример — подвесной мост через пролив Такома: мост рухнул, когда вошёл в резонанс с относительно слабым ветром.
Тесла, взяв это на заметку, создал крохотную машину, способную разрушить здание. Когда он экспериментировал со своим изобретением, раздался странный шум, а вокруг стали разлетаться искры, и все предметы в его лаборатории начали слетаться к одной точке — машине. Тесла разбил её молотком, прежде чем здание рухнуло.
Когда его шутки ради спросили, как уничтожить Эмпайр Стейт Билдинг, он серьёзно ответил, что нужно его изобретение, соответствующее давление воздуха и немного времени, чтобы найти правильную вибрацию. Машину назвали осциллятором. Кстати, Тесла считал, что она обладает целебными свойствами — если, конечно, удастся настроить её так, как нужно.
материал с factroom.ru
Большой адронный коллайдер — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений.
Коллайдер построен в ЦЕРНе (Европейский совет ядерных исследований), находящемся около Женевы, на границе Швейцарии и Франции.
Коллайдер является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тысяч учёных и инженеров из более чем 100 стран.
«Большим» назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; «адронным» — из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков; «коллайдером» — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.
Поставленные задачи
Поиск Новой физики
Стандартная модель не может считаться окончательной теорией элементарных частиц. Она должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ. Такие теории коллективно называют «Новая физика» или «За пределами Стандартной модели». Главная задача Большого адронного коллайдера — получить хотя бы первые намеки на то, что это более глубокая теория.
Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы:теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.
Коллайдер позволит провести эксперименты, которые ранее были невозможны и, вероятно, подтвердит или опровергнет часть этих теорий.
Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» — например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.
Изучение топ-кварков
Топ-кварк — самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц.
Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе — Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения бозона Хиггса.
Изучение механизма электрослабой симметрии
Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса — частицы, предсказанной шотландским физиком Питером Хиггсом в 1964 году в рамках Стандартной модели.
Поиск суперсимметрии
Первым значительным научным достижением экспериментов на коллайдере может стать доказательство или опровержение «суперсимметрии» — теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу».
Технические характеристики
В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109электронвольт) на каждую пару сталкивающихся нуклонов.
На начало 2010 года коллайдер уже несколько превзошел по энергии протонов предыдущего рекордсмена — протон-антипротонный коллайдер Тэватрон, который до конца 2011 года работал в Национальной ускорительной лаборатории им. Энрико Ферми (США).
Несмотря на то, что наладка оборудования растягивается на годы и ещё не завершена, Большой адронный коллайдер уже стал самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).
Скорость частиц в Большом адронном коллайдере на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших энергий достигается в несколько этапов.
Потребление энергии
Во время работы коллайдера расчётное потребление энергии составит 180 МВт. Предположительные энергозатраты всего ЦЕРН на 2009 год с учётом работающего коллайдера — 1000 ГВт·ч, из которых 700 ГВт·ч придётся на долю ускорителя.
Эти энергозатраты — около 10 % от суммарного годового энергопотребления кантона Женева. Сам ЦЕРН не производит энергию, имея лишь резервные дизельные генераторы.
Научные результаты
Благодаря большей энергии по сравнению с предшествовавшими коллайдерами, БАК позволил «заглянуть» в недоступную ранее область энергий и получить научные результаты, накладывающие ограничения на ряд теоретических моделей.
Краткий перечень научных результатов, полученных на коллайдере:
- открыт Бозон Хиггса (мы уже писали о нем)
- подтверждено существование топ-кварка, ранее наблюдавшегося только на Тэватроне;
- открыты новые, теоретически предсказанные частицы
- получены первые данные протон-ионных столкновений на рекордной энергии, обнаружены угловые корреляции, ранее наблюдавшиеся в протон-протонных столкновениях
- объявлено о наблюдении частицы Y(4140), ранее наблюдавшейся лишь на Тэватроне в 2009 г.
Финансирование проекта
В 2001 году ожидалось, что общая стоимость проекта составит около 4,6 млрд швейцарских франков (3 млрд евро) за сам ускоритель (без детекторов) и 1,1 млрд швейцарских франков (700 млн евро) составит доля ЦЕРН в проведении экспериментов (то есть в строительстве и обслуживании детекторов).
Строительство БАК было одобрено в 1995 году с бюджетом 2,6 млрд швейцарских франков (1,6 млрд евро) и дополнительными 210 млн швейцарских франков (140 млн евро) на эксперименты.
В 2001 году эти расходы были увеличены на 480 млн франков (300 млн евро) в части ускорителя и 50 млн франков (30 млн евро) в части экспериментов (расходы, относящиеся непосредственно к ЦЕРН), что вследствие сокращения бюджета ЦЕРН привело к сдвигу планируемых сроков введения с 2005 года на апрель 2007 года.
Бюджет проекта по состоянию на ноябрь 2009 года составил 6 млрд долл. — столько было инвестировано в строительство установки, которое продолжалось семь лет.
Научно-популярные фильмы
- «BBC: Машина Большого Взрыва» (англ. The Big Bang Machine) — научно-популярный фильм, 2008 год.
- «BBC. Horizon: Охота за бозоном Хиггса — спецвыпуск» / (англ. The Hunt for the Higgs — A Horizon Special) — научно-популярный фильм, 2012 год.
материал с medium.com
Фото: ESA/Hubble & NASA
Это открытие наука ждет уже более 100 лет. Когда-то в своей теории относительности Альберт Эйнштейн предсказал существование гравитационных волн. Но поймать их никак не удавалось. Под них строились специальные установки, однако «зверь» не попался в «ловушки». И вот международная команда ученых объявила на весь мир — есть! Правда, попались не сами волны, а их след. Он зафиксирован с помощью телескопа BICEP2, размещенного в Антарктиде.
— Это не только первая в мире регистрация следа гравитационных волн, но и очень весомое доказательство теории Большого взрыва, — сказал корреспонденту «РГ» доктор физико-математических наук, главный научный сотрудник Государственного астрономического института им. Штейнберга Михаил Сажин. — Дело в том, что в нынешней Вселенной гравитационные волны относятся к очень слабым взаимодействиям, например, все планеты Солнечной системы генерируют гравитационные волны общей мощностью 1 киловатт. Это мизер. Именно поэтому они и не регистрируются даже самой современной техникой. А в теории Большого взрыва показано, что в ранней Вселенной гравитационные волны должны были иметь очень большую мощность. Именно их и удалось сейчас обнаружить астрофизикам, что, конечно, сразу стало мировой сенсацией.
След гравитационных волн запечатлен на так называемом реликтовом излучении, за открытие и исследования которого были присуждены две Нобелевские премии — в 1978 и 2006 годах. Оно тоже было предсказано теорией и стало одним из доказательств Большого взрыва. Но ученых не устраивал его возраст. Это излучение сформировалось примерно через 300 тысяч лет после взрыва, а ученым хотелось подобраться поближе к моменту рождения Вселенной.
— Возраст рисунка, на котором виден след гравитационных волн, равен возрасту Вселенной, он появился через 10 в минус 34 степени секунды после Большого взрыва, — говорит Михаил Сажин. — На рисунке можно видеть, как гравитационные волны особым образом поляризуют реликтовое излучение.
Надо отметить, что далеко не все ученые вообще верят в существование гравитационных волн. Поэтому наверняка сенсационное открытие астрофизиков будет встречено многими скептически. Сами авторы прекрасно это осознают. Не случайно целых три года перепроверяли свои результаты. По их словам, сейчас вероятность ошибки составляет один шанс на 3,5 миллиона. Но для абсолютной достоверности и признания международным сообществом надо подтверждение других экспериментаторов. И если окажется, что открытие действительно сделано, то оно с высокой вероятностью будет претендовать на Нобелевскую премию.
материал с rg.ru