черная дыра

Необъяснимые свойства черной дыры

Одним из самых загадочных явлений во Вселенной

уже полсотни лет остаются черные дыры. Мы точно не знаем, откуда они взялись и зачем они нужны, однако ученые твердо уверены: решение загадки черных дыр станет тем днем, когда человечество подчинит себе весь космос. Пока же физики могут только предполагать, зачем именно эти невероятные образования «пожирают» звезды и как им удается изменять время.

Необъяснимые свойства черной дыры

Необъяснимые свойства черной дыры

Необъяснимые свойства черной дыры

Необъяснимые свойства черной дыры

Необъяснимые свойства черной дыры

Необъяснимые свойства черной дыры

Необъяснимые свойства черной дыры

источник

Получен самый детализированный снимок черной дыры
С помощью совместного использования 16 телескопов удалось получить астрономическую фотографию такого высокого разрешения, при котором с Земли можно различить на Луне объект размером с монету, сообщает Национальная радиоастрономическая обсерватория (NRAO).

Четкость снимка нельзя сравнить с безупречной картинкой современного HD-телевизора. На фото видно довольно размытое светлое пятно. Однако надо учесть, что запечатленный астрономический объект — это черная дыра в галактике, удаленной от Земли на 900 миллионов световых лет.

Астрономы получили это изображение посредством радиотелескопа, установленного на борту российского космического аппарата «Спектр-Р», и 15 наземных радиотелескопов, в том числе из серии VLBA (Very Long Baseline Array) Национального научного фонда. Разрешающая способность телескопа в значительной степени зависит от его размера. Таким образом, объединив несколько телескопов, можно добиться того же эффекта, какое дало бы одно массивное устройство. В данном случае сочетание инструмента спутника «Спектр-Р» и наземных телескопов сопоставимо с работой огромного радиотелескопа шириной 100 000 километров. Один такой аппарат в восемь раз превышал бы диаметр Земли, объяснили в NRAO.

На снимке изображены потоки вещества, извергаемые лежащей в центре галактики BL Lacertae черной дырой обычного размера. Она поглощает космическое вещество, которое вращается вокруг центра галактики. При этом не все объекты, приближающиеся к черной дыре, попадают в нее. Некоторые частицы пролетают почти со скоростью света, минуя дыру и образуя большие выбросы вещества, которые были засняты телескопом. Их состав аналогичен составу так называемого Облака Оорта, расположенного на границе Солнечной системы. Эта сферическая область, включающая в себя ледяные и каменистые объекты, находится на расстоянии 740 миллиардов километров от Солнца.
Проект осуществляется под руководством Астро-космического центра в Москве. С подробными результатами исследования можно ознакомиться в издании The Astrophysical Journal.
источник

Попав в черную дыру, можно и выжить Кип Торн, эксперт в вопросах относительности и научный консультант в Голливуде, совместно со Стивеном Хокингом пишет сценарий к кинокартине и очень скоро надеется уловить гравитационные волны, о которых говорил Эйнштейн.

Нуньо Домингес (Nuño Domínguez)

Кип Торн (Kip Thorne) родился в1940 году в г. Логан (США). Один из ведущих мировых экспертов в области черных дыр. Последнее время он также выступает в качестве консультанта съемочной группы кинокартины «Интерстеллар» (Interstellar), в которой рассказывается об экспедиции в кротовую нору, члены которой затем попадают в черную дыру, а из нее — в пятое измерение. На прошлой неделе этот физик-теоретик Калифорнийского технологического института прибыл в Лондон, чтобы представить медаль Стивена Хокинга (Stephen Hawking), которая ежегодно будет вручаться в ходе международного фестиваля науки и искусств STARMUS. После торжественной церемонии Кип Торн рассказал о своих планах на будущее.

El País: Почему Вы считаете, что черные дыры так привлекают людей?

Кип Торн: Понимаете ли, они загадочные, странные и несут на себе личную печать Стивена Хокинга… Ученые рассматривают их как уникальные объекты. Хотя они возникли в результате внутреннего взрыва звезды, материя странным образом исчезает в центре черной дыры. Поэтому они состоят лишь из искривленного времени и пространства, в них нет материи. Они совершенно отличаются от меня и от Вас.

— Для съемок картины «Интерстеллар» вы произвели реальные расчеты на случай, если кто-то попадет в черную дыру. Что оказалось самым интересным?

— Самым волнующим было увидеть, что собой представляет черная дыра Гаргантюа. Она прекрасна с сияющей короной вокруг и пересекающим ее диском.
Очень интересен эпизод, когда Купер [актер Мэттью Макконахи / Matthew McConaughey] входит в черную дыру. В этот момент он говорит: я пересекаю горизонт событий [точку невозврата в черной дыре]. Из черной дыры ничто не может выйти обратно, даже свет, поэтому, если ты находишься напротив нее, то не увидишь ничего, но если ты обернешься назад и уже находишься внутри дыры, тогда увидишь внешнюю вселенную. И это поистине завораживающее зрелище, когда корона раскаленного газа вокруг черной дыры представляет собой кольцо в небе, в котором заключена вселенная.

— И что происходит потом?

— Мы ведь знаем, что внутри черной дыры существуют три сингулярности. Первая — это точка, в которой кривизна времени и пространства становится бесконечно крепкой. Существует сингулярность, открытая тремя советскими физиками приблизительно в 1970 году. Если попадешь в нее, то тебя разорвет в клочья. Вторая сингулярность состоит из вещей, которые попадают в черную дыру после тебя. Они попадают туда в течение миллиардов лет, но внутри черной дыры время течет так медленно, что весь этот материал сваливается на тебя в течение доли секунды, как лист железа. Не хотелось бы, чтобы это случилось со мной. Купер обнаруживает третью сингулярность, самую слабую из всех. Эту сингулярность вызывает все то, что попало в черную дыру до тебя. Даже самая малая частица этого материала рикошетирует подобно камешку, пущенному по водной глади. Эта малая частица материи, попавшая в черную дыру, за доли секунды выталкивается обратно, вынося с собой Купера. Так что есть возможность выжить, если попадешь в черную дыру.

— Какие дальнейшие шаги Вы намерены предпринять в этой области?

— Стивен Хокинг, американский кинопродюсер Линда Обст (Lynda Obst) и я написали девять черновиков новой кинокартины. Она сильно отличается от «Интерстеллар». Мы начинаем переговоры с возможными сценаристами и киностудиями по поводу съемок. Пока что мы находимся лишь в начале проекта.

— О чем пойдет речь в кинофильме?

— Кристофер Нолан (Christopher Nolan): Я понял, что не следует ничего рассказывать о фильме раньше времени. Информация выдается в нужный момент, чтобы подогреть интерес публики. Поэтому сейчас могу сказать только это. И еще то, что он будет интересен с физической точки зрения.

— Какое будет следующее важное открытие в области физики черных дыр?

— Есть то, что мы никогда не видели: что происходит с двумя черными дырами при их столкновении и образовании вихря в пространстве-времени. Такое столкновение приводит к тому, что на короткий период ход времени ускоряется, потом замедляется, затем вновь ускоряется и т.д. Все происходит очень хаотично. Это деформирует пространство в одном и в другом направлении, оно начинает вращаться по часовой стрелке, потом в обратную сторону, образуются вихри, искривляющие пространство и сталкивающиеся друг с другом. Мы недавно наблюдали за этим процессом, воссоздав его на компьютере, и начали понимать, как ведет себя вихрь при хаотичных изменениях времени и пространства. Мы этого никогда не наблюдали, но собираемся сделать это в ближайшем будущем.

— Как?

— При столкновении этих черных дыр образуются волны в материи пространства-времени, которые называются гравитационными. Они позволят нам понять, как вернуться назад во времени, отталкиваясь от волны, которую мы видим, и с помощью симуляций, и доказать, действительно ли они показывают, что происходит.

— Когда вы рассчитываете сделать это?

— Чтобы сделать это, мы построили детекторы LIGO. Оборудование начало производить поиск гравитационных волн с помощью самых современных детекторов в сентябре 2015 года, и эта работа продолжится до января 2016 года. Эти детекторы такие чувствительные, что могут поймать сигнал, порожденный столкновением черных дыр на расстоянии миллиарда световых лет от Земли, то есть одной десятой расстояния до границы видимой вселенной. Если нам повезет, мы поймаем сигнал уже на первом этапе поиска.

— Каков будет следующий большой прорыв в физике?

— Изучение законов квантового притяжения, которые основаны на сочетании принципов квантовой физики с теорией относительности. Мы пока хорошо не понимаем этих законов. Возможно, речь идет о какой-нибудь версии теории струн или М-теории. Если бы надо было сделать прогноз, я бы сказал, что мы идем по верному пути. Как только мы узнаем эти законы, они нам помогут понять, наконец, как образовалась вселенная, что происходит в сингулярности черных дыр и можно ли двигаться назад во времени.

— То есть Вы хотите сказать, что можно будет путешествовать во времени?

— Это откроет дверь к путешествиям во времени или, наоборот, закроет ее [смеется].

— В одном из своих трудов Вы говорили о том, что если человечество хочет выжить, оно должно отправиться в черную дыру. Вы считаете, что это наше будущее?

— Потребуется еще много времени на изучение черных дыр. При вращении черной дыры выделяется огромное количество ротационной энергии, необходимой для образования гигантских взрывов, исходящих из ядра галактик. Люди из более продвинутых цивилизаций смогут использовать их как источник необыкновенной энергии, которая будет намного более мощной, чем ядерный синтез, происходящий в недрах звезд.

— Вы думаете, что есть другие формы разумной жизни во вселенной?

— Очень возможно, что во вселенной существует разумная жизнь, цивилизации, более развитые, чем наша. Но расстояния между звездами такие огромные, что межзвездные путешествия вряд ли могут стать реальностью. Я сильно сомневаюсь, что представители других цивилизаций когда-либо посещали Землю, но мне представляется вполне вероятным, что мы вступим когда-нибудь с ними в контакт, может быть, даже еще и пока я жив, а может быть, и нет. Поиск сигналов, посылаемых внеземными цивилизациями, — одно из важнейших стремлений современной науки.
источник
— Какой самый значительный вклад в науку внес Альберт Эйнштейн, чьей общей теории относительности исполняется 100 лет?

— Он дал нам закон, который регулирует законы природы. Это принцип относительности, согласно которому, все законы природы должны быть одинаковы с точки зрения любого человека и в любой точке вселенной, если они обладают свободой перемещения. Я думаю, что это самое важное научное открытие в истории.

Астроном выяснил, до каких пределов может расти черная дыра
Британский ученый раскрыл пределы роста черных дыр — оказывается, сверхмассивные объекты такого рода в центрах галактик могут достигать массы примерно в 50 миллиардов Солнц, после чего их источник пищи — диск аккреции — распадется, и они больше не будут поглощать материю и станут невидимыми для нас.

Британский астрофизик выяснил, что сверхмассивные черные дыры в центрах галактик не растут бесконечно – они могут достигнуть массы в 50 миллиардов Солнц, после чего их диск аккреции распадется, и они больше не будут поглощать материю, говорится в статье, опубликованной в журнале Monthly Notices Letters of the Royal Astronomical Society.

Эндрю Кинг (Andrew King) из университета Лейчестера (Великобритания) пришел к такому неожиданному выводу, пытаясь объяснить то, почему за последние годы астрономы нашли большое количество черных дыр-«тяжеловесов», чья масса колеблется в пределах от 20-30 миллиардов масс Солнца, но при этом так и ни разу не перешагнула через эту отметку.

Изучая процессы, происходящие в окрестностях сверхмассивных черных дыр и в прилегающих к ним уголках галактик, британский астрофизик обратил внимание на то, что масса черной дыры очень сильно влияет на поведение ее главного «источника пищи» – диска аккреции.

Он представляет собой тонкий «бублик» из перемолотых обломков звезд и планет, окружающий черную дыру и разогревающийся до очень высоких температур под действием ее притяжения. Благодаря этому разогреву диск аккреции светится, что позволяет нам «видеть» черные дыры в центрах галактик.

Как рассказывает Кинг, стабильность и радиус этого диска зависит от того, на каком расстоянии от черной дыры находится та точка, через которую проходит самая ближняя к ней орбита, по которой звезда или другой объект смогут вращаться вокруг нее, не будучи разорванной ее притяжением.

Положение этой точки зависит от одного параметра – массы черной дыры: чем она выше, тем дальше находится эта орбита, и тем меньше будет радиус диска аккреции. Иными словами – чем больше масса черной дыры, тем тоньше будет «бублик» из материи, которую она поедает.

Это утончение обусловлено тем, что на большом расстоянии от сингулярности материя диска аккреции будет охлаждаться достаточно сильно для того, чтобы она могла сбиваться в «комки» и превращаться в звезды, чье рождение и притяжение разобьет диск на части и разрушит его.

Расчеты, проведенные Кингом, показывают, что максимальный предел массы черной дыры, при которой этот «бублик» из раскаленной пыли и газа будет существовать, составляет примерно 50 миллиардов масс Солнца. Эта оценка в принципе укладывается наблюдения – самые тяжелые объекты такого рода, известные нам, S5 0014+813 и H1821+643, весят по 30-40 миллиардов масс Солнца.

«Конечно, черные дыры более крупных размеров в принципе могут существовать – к примеру, они могут возникать, когда черная дыра максимальной массы сливается с менее крупной «кузиной». Но в таком случае ее увидеть будет невозможно, так как это слияние не породит вспышки света. Их можно будет заметить только по тому, как они будут искривлять свет, проходящих в их окрестностях, или по порождаемым гравитационным волнам во время слияния», — заключает Кинг.

источник

Что происходит с веществом, попавшим в черную дыру?
Ученые считают, что у каждой черной дыры есть и обратная сторона — белая дыра, через которую вещество выбрасывается в другую вселенную.
Можно ли улететь за пределы Вселенной? Да, но для этого придется нырнуть в черную дыру. Мы знаем, что все, что попадает в поле притяжения черной дыры, падает к ее центру и уже не может вырваться обратно. Черные дыры притягивают даже излучения, состоящие из частиц, не имеющих массы, например, свет. Черные дыры буквально пожирают Вселенную, в которой мы живем.

Черные и белые

Однако теперь ученые заговорили о том, что, кроме нервных, есть и белые дыры. Они постоянно выбрасывают материю и энергию. И хотя белых дыр никто не видел, то, что они существуют, доказано математически. Астрофизики из Калифорнийского университета недавно вычислили их, решая с помощью суперкомпьютера уравнения теории относительности Эйнштейна. Черные дыры были открыты в 1916 году немецким астрономом Карлом Шварцшильда похожим образом — как и решение уравнений общей теории относительности. А сегодня за черными дырами уже наблюдают астрономы. Правда, черная дыра не отражает свет, поглощая его, как и любую другую материю и энергию. Поэтому увидеть ее в телескоп нельзя. Зато можно просчитать, как гравитация черной дыры влияет на другие небесные объекты, и определить ее положение в пространстве. Таким образом астрономы обнаружили уже много черных дыр.

«Белых дыр столько же, сколько черных, — убежден американский космолог Блэйк Темпл. — Это космические вулканы, которые выбрасывают поглощенную черными дырами материю, порождая новые вселенные». При этом в точке разрыва между двумя вселенными может существовать своего рода туннель: черная дыра со стороны нашей вселенной и белая со стороны другой. Астрофизики полагают, что вся материя, которая исчезает в черной дыре, в неизмененном виде выталкивается наружу белой. Но происходит это не в последовательности «поглотил — выбросил». Согласно теории относительности, время может течь вспять. «Поэтому, — утверждает профессор Игорь Новиков, член-корреспондент Российской академии наук, — поглощенное выталкивается белой дырой еще до момента поглощения».

Что происходит с веществом, попавшим в черную дыру?
Корабль поколений

Астрофизики рассуждают: если все, что падает в черные дыры, попадает целым и невредимым в параллельные вселенные, может ли человек на космическом корабле совершить путешествие в другой мир? Возможно, да, но не в скором будущем. Ближайшие известные черные дыры находятся на расстоянии сотен световых лет от Земли. Чтобы долететь до одной из них, понадобится огромный космический корабль, на котором смогут жить несколько поколений космонавтов. Американский антрополог Джон Мур считает, что на «корабле поколений» должны будут стартовать команды из семейных пар без детей в составе 150-180 человек. Первые годы исследователи будут привыкать к новой среде обитания. После они дадут жизнь нескольким поколениям. В каждом поколении, по словам Мура, каждый член экипажа должен иметь возможность выбирать по меньшей мере из десяти потенциальных супругов. Корабль будет для зачатых космонавтами детей не искусственной средой, как для их родителей, а самым естественным из миров: никакого другого мира они просто не будут знать. «Пары должны складываться естественным образом — это поможет людям выдержать колоссальные психологические нагрузки такого путешествия», — считает Мур. Семейные отношения должны помочь астронавтам сохранить в коллективе стабильность во время долгого полета. На корабле должна быть автономная система жизнеобеспечения, потому что доставлять на него припасы будет невозможно. Приводить такой корабль в движение будут двигатели, принципиально отличающиеся от тех, что установлены на современных космических аппаратах. Горючее для них придется получать непосредственно из межзвездного пространства. Возможно, это будут реактивные двигатели, работающие на водороде — самом распространенном веществе во Вселенной. Во время полета такой двигатель будет собирать водород при помощи сильного магнитного поля. А если собранный водород преобразовать в термоядерном реакторе в гелий, можно получить огромное количество энергии и использовать ее для внутренних нужд корабля.

Куда и зачем

Еще одна важная проблема, с которой столкнутся путешественники в другую вселенную, это полная неизвестность за границами черной дыры. Как будет выглядеть вселенная, в которую они попадут? Не погибнут ли они в ней в первый же момент? И, даже если иная вселенная окажется похожей на нашу, в каком месте этой вселенной будет располагаться белая дыра, из которой вынырнут наши герои? Может статься, что еще не одному поколению придется смениться на корабле, прежде чем он достигнет в чужой вселенной какого-нибудь скопления звезд. И еще не факт, что рядом хотя бы с одной из этих звезд будут планеты. Не говоря уже о том, что одна из этих планет окажется обитаемой.

источник

Ученые рассказали, что ждет человека при попадании в черную дыру
Ученые рассказали, что ожидает человека, если он окажется в черной дыре.
Ранее считалось, что его разорвёт на части, а после поглотит гравитация космического объекта. Однако исследователи полагают, что в реальности всё будет по-другому.

Как заявляют физики, у человека появится клон. При этом, одна его версия будет сразу же уничтожена, а другая пролетит через горизонт событий без возврата обратно. Согласно законам квантовой физики, информация не может потеряться безвозвратно, поэтому человек должен преодолеть данную границу испепелённый заживо, но в этом случае не работает теория Энштейна, которая гласит, что он останется невредимым.

Американские специалисты убеждены, что человек, попавший в черную дыру, продолжает своё существование там, не испытывая давления и всевозможных перегрузок. Для того, кто наблюдал бы за этим процессом, упавший в черную дыру, исчезнет. В черной дыре человек может оставаться бесконечно долго. Из-за искривления времени и пространства, законы физики перестают работать.

источник

Что будет, если в Солнечной системе появится черная дыра?

Мысленные эксперименты — отличная штука. Мы можем представить, что будет, если исчезнет Луна, и подозреваем, что наши предки видели сверхмассивную черную дыру Млечного Пути.

Догадываемся, что Луна не всегда была мертвой и холодной, а на Марсе когда-то текли реки и моря. Но мы находимся на окраине галактики, и черные дыры для нас почти что не существуют. Что, если бы одна из них образовалась в Солнечной системе? Возможно ли это в принципе?

В ночном небе начали происходить странные вещи. Вы, как и многие другие, активно следите за новостями. Выступает президент, его поддерживают астрофизики, геологи и климатологи. Он нервничает, но, отдавая дань традиции, делит новости на «плохие» и «хорошие». Хорошие новости: мы не умерли, планета не уничтожена, ее не унесло в космос и не раскрутило в гравитационном колесе. Плохие: нас ждут «весьма интересные перемены климата». Попытка выжить рядом с черной дырой похожа на бегство с «Титаника» — ради холодной смерти в океане.

Прежде, чем вы потянетесь за тревожным чемоданчиком или начнете сходить с ума: не бойтесь, это всего лишь мысленный эксперимент. Черные дыры представляют собой одно из самых страшных явлений во Вселенной. Их огромная тяжесть искривляет пространство и время — и наше понимание их природы — до предела, до одной точки. Сверхмассивные черные дыры (вроде этой) скрываются в ядрах галактик, поглощая миллионы, миллиарды звезд. Самое точное изображение черной дыры на сегодняшний день мы наблюдали в фильме «Интерстеллар». На деле же это явление во много раз страшнее.

Что будет, если недалеко от нашей Солнечной системы родится или обнаружится черная дыра?

Стоит сразу отметить, что наше Солнце никогда не станет черной дырой. Для этого нужна масса, порядком превосходящая солнечную — в 10-15 раз. Тогда случится гравитационный коллапс, и под действием силы тяжести материя буквально схлопнется в одну точку. Похожее явление лежит в основе водородных бомб и в теории холодного термоядерного синтеза, разве только гравитация играет другую роль. Более того, на роль потенциальных черных дыр не годятся и другие звезды в соседних галактиках. Большинство из них являются красными карликами и обладают массой в 8-60% нашего Солнца.

Остается два варианта: либо черная дыра спонтанно появляется в наших окрестностях, либо приходит непонятно откуда. Первое было бы возможно, если бы все страхи вокруг Большого адронного коллайдера приобрели смысл и черную дыру создали искусственным путем. Но нет, это невозможно.

Что касается второго, астрономы и астрофизики подтвердили существование около 2000 блуждающих черных дыр, но шансы того, что одна из них дойдет до нас, близятся к нулю. И как отметил писатель Дуглас Адамс:

«Космос велик. Вы просто не в состоянии осознать, насколько невероятно и умопомрачительно он велик. Я имею в виду, вам может показаться длинной дорога в аптеку, но по меркам космоса это семечки».

Впрочем, вероятность появления черной дыры — слишком интересное событие, чтобы проходить мимо.

Искривляющие пространство и время

Если посмотреть на черную дыру издалека, она будет похожа на любой другой массивный объект. Пока она прямо перед вами, она подчиняется законам классической механики и ньютоновому закону универсальной гравитации, который гласит, что притяжение между двумя объектами пропорционально их массе и уменьшается с увеличением дистанции. Другими словами, нет гравитационной разницы между R136a1, «голубым» карликом весом в 265 солнц и черной дырой с таким же весом.

Подойдите к черной дыре поближе, чтобы попасть в ее гравитационное поле, и вы столкнетесь с двумя разными наборами правил. С общей теорией относительности Эйнштейна, которая допускает существование черных дыр, искривляющих пространство и время, и экстремальной гравитацией, которая доводит это искривление до крайности.

Если вы хотите изучить черную дыру, не вылезая из космического корабля, вы обнаружите, что чем ближе вы к средоточию огромной массы, тем больше ваши двигатели будут надрываться, чтобы удержать вас на круговой орбите. Сначала небольшие импульсы ракеты смогут стабилизировать ее; но чем дальше, тем больше энергии вам придется тратить, дабы не сойти с орбиты. В итоге только безостановочная работа двигателей ракеты будет отделять вас от всепоглощающего ничто. Впрочем, в фильме «Интерстеллар» — и в этом заслуга Кристофера Нолана и Кипа Торна — эти эффекты были показаны на удивление прилично.

Как только у вас закончится топливо (или вы внезапно решите выключить двигатели), вы пересечете горизонт событий черной дыры, границу, из-за которой не может вернуться даже свет. После этого вам придется ответить за все свои грехи. Ничто не остановит неумолимое движение к сингулярности — ядру бесконечно сжатого пространства и времени, где физика, какой мы ее знаем, сворачивается в клубок и скулит.

По мере вашего продвижения время будет замедляться. Очень сильно. С вашей точки зрения ничего не изменится, но ваши друзья, наблюдающие за вашим трюком, увидят что-то вроде смазанных молний. Но только до горизонта событий — за его пределы не выходит свет, а значит, увидеть вас никто не сможет. Идеальное преступление, не так ли?

Гравитационное искривление времени — явление достаточно обыденное, но слишком слабое, чтобы его можно было заметить. На Земле, к примеру, прожив миллиард лет на уровне моря, вы будете на секунду моложе, чем ваш ровесник, проживший на вершине Эвереста. Говорят, время боится пирамид, но вам придется провести слишком много времени, прислонившись к ней щекой, чтобы ощутить замедление времени в Париже.

В черной дыре время крутится волчком. Когда мы говорим, что падения в сингулярность нельзя избежать, это означает не только неумолимое действие гравитации или искажение пространство. Время в черной дыре сжимается до такой степени, что путь в сингулярность буквально становится вашим будущим. Бегство от сингулярности будет похоже на попытку остановить время.

Что случится с нашей Солнечной системой, если она вдруг испытает на себе гнев черной дыры и попадет в ее водоворот?

Время пришло

Допустим, у нас есть черная дыра, которая заперта в двойной системе в обнимку со звездой, которая готовится стать сверхновой. Внезапно это происходит, гравитационный гигант выстреливает в нашем направлении на скорости десятков и сотен километров в секунду. Как мы об этом узнаем?

Ответ прост: не узнаем до тех пор, пока он не столкнется с чем-либо, поскольку массивная гравитация черных дыр не выпускает даже свет. А значит, вместо того чтобы пытаться найти черный перец на черном ковре, давайте рассмотрим несколько путей, которые помогут нам напрямую определить черную дыру.

Во-первых, материя, разорванная черной дырой, будет излучать радиацию по мере вращения диска аккреции. Пространство вокруг будет светиться, как новогодняя елка во мраке ночи.

Во-вторых, искажение пространства вокруг черных дыр можно обнаружить земными методами. Например, с помощью гравитационного линзирования, предсказанного в рамках общей теории относительности Эйнштейна. Эффект проявляется вблизи массивных объектов и фиксируется астрономами. Этот же способ используют для поиска темной материи.

Но даже в идеальных условиях обнаружить черную дыру таким образом будет сложнее, чем найти блох на пятнистой собаке ночью с помощью бинокля. С повязкой на глазу. Для успешного гравитационного линзирования черная дыра должна пройти между нами и звездой. И после этого нам еще должно повезти.

Кроме того, черная дыра может дать о себе знать, если будет взаимодействовать гравитационно с небесными объектами вроде планет, звезд, астероидов и комет, что снова подводит нас к ключевому вопросу: как близко будет располагаться наша гипотетическая черная дыра, угнездившаяся по соседству?

Конечно, чем ближе, тем опаснее. По мере приближения орбиты планет и лун будут танцевать танец, как воробей, попавшийся в паутину, волоча за собой кривые орбиты и нарушая порядок, который пытаются собрать по частям еще со времен Николая Коперника.

Здесь, на Земле, изменились бы приливы, отливы и цвет неба. Если гравитация, как по заказу Жириновского, отдалит орбиту планеты дальше от Солнца, приблизит ее, сделает более эллиптической, в лучшем случае мы будем страдать от перепадов температур и странностей с временами года. В худшем случае (кроме того, чтобы стать частью черной дыры) Земля может упасть на Солнце или отправиться в дальнее плавание в пучины космоса, обрекая нас всех на холодную смерть.

Известный астрофизик Нил де Грасс Тайсон однажды емко выразил проблемы, которые возникнут, если неподалеку заведется «черная гостья»:

Что ж, раз уж мы обречены, давайте соберемся с духом и нырнем навстречу сингулярности.

В русском языке есть слово из шести букв, которое лучше всего описало бы то, что нас ждет. Давайте назовем это просто безнадегой. Ученые научились делить на ноль, и мы оказались в черной дыре. Даже Брюс Уиллис с отважным экипажем нефтяников, прошедший особую подготовку в Челябинске, не спас бы нас.

Появись черная дыра в окрестностях Нептуна, мы бы сразу почувствовали это. Ученые знают орбиту Нептуна так хорошо, что могут обнаружить даже отклонение в 1 угловую секунду (единица угловой меры). Обычная черная дыра с массой в десять солнц, летящая на скорости 300 км/c, выдала бы себя еще на расстоянии в одну десятую светового года.

И вот вам последняя порция хороших новостей: черная дыра такого размера даст нам минимум 100 лет, чтобы закончить свои земные дела. Возможно, опасность такого масштаба прекратит все земные войны или начнет одну глобальную. Возможно, человечество успеет уничтожить себя самостоятельно, как только узнает, что через сто лет — всё, капут. Пока это неважно. Если же дыра будет двигаться медленнее, фатальное время ожидания увеличится в десять раз. И вот тогда времени на строительство ковчега или сборы планетарного чемодана с вещами должно хватить.

По мере подхода к Нептуну, черная смерть стягивает газовый гигант с орбиты. Планета начинает вести себя странно: по мере удаления от нас происходит красное смещение — длина волны ее радиации, включая свет, уходит в красный спектр. Как только Нептун оказывается за черной дырой, гравитационная линза натягивается на черную сферу и обтекает ее. Когда планета появляется снова, уже перед нами, ее цвета переживают синее смещение — длина волны уходит в этот конец спектра.

Красное и синее смещение, как правило, является следствием удаления или приближения звездного объекта по отношению к нам. Похоже на эффект Допплера.

Вместе с тем, как черная дыра «кушает» планету, газ будет закручиваться в гравитационную спираль, как сахар во время создания сладкой ваты. С нашей точки зрения спираль будет вечно уходить в горизонт событий. Но свет, испущенный гибелью Нептуна, отразится от черной дыры в негативе, как солнечная корона во время затмения.

Чем ближе черная дыра будет к Земле, тем больше будет проявляться окружающий ее эффект искажения, как в кривом зеркале. Все телескопы будут видеть только пустоту в центре черной дыры.

Если наша черная смерть будет сверхмассивной черной дырой, история уже закончится — ее горизонт событий будет в пять раз больше, чем Солнечная система. Но это скучно. Давайте возьмем пример поменьше и все же постараемся разглядеть нутро этого монстра.

По ту сторону горизонта событий

Мы движемся по кроличьей норе, зная, что ваше знакомство с ней будет очень коротким. Надеемся, что мы успеем хотя бы оценить внутренний интерьер черной дыры. К счастью для нас, но к несчастью для Солнечной системы, эта черная дыра — сверхмассивная. Мы изменили правила, но если бы мы этого не сделали, все бы уже закончилось по некоторым причинам.

В небольшой черной дыре — скажем, с массой в 30 солнц — приливные силы, вызванные увеличением тяжести, разорвали бы нас задолго до того, как мы достигли горизонта событий. Но там гравитация составляет где-то миллион земных. На то, чтобы насладиться победой — ведь мы достигли горизонта событий — у нас не будет и 0,0001 секунды.

В сверхмассивной черной дыре с массой в 5 миллионов солнц, вроде той, что расположена в центре нашей галактики, нас ждет совсем другой опыт. Любая черная дыра, вобравшая массу более 30 тысяч солнц, обладает приливными силами с гравитацией меньше одной земной на горизонте событий. У нас будет 16 секунд, чтобы осмотреться (и изменить правила игры), прежде чем мы достигнем точки сингулярности. Чем больше масса, тем больше времени.

Падение сквозь горизонт событий похоже на процесс засыпания или влюбленности: сложно определить точку отсчета, когда это произойдет, но после этого ваше чувство реальности будет совершенно иным. В черной дыре вы будете видеть звезды (свет попадает внутрь, но не наоборот), но пространство вокруг будет напоминать мыльный пузырь.

Ну а после того, как вас раздавит в ноль, вы попадете в точку бесконечной кривизны, где известному нам времени и пространству приходит конец. И узнать, как работает физика в этой точке бесконечной кривизны времени и пространства, бесконечной массы и плотности, у нас просто нет возможности. Иногда кажется, что сердце черной дыры откроет перед нами все секреты Вселенной или поднимет бесконечное число вопросов. Но это всего лишь догадки.

источник

Что такое горизонт событий, или как вырваться из черной дыры

Изучением черных дыр всерьез физики занялись не так давно — хотя сама концепция их существования появилась еще в позапрошлом веке.

Но идея присутствия где-то в космосе таких объектов казалась настолько фантастической и недоказуемой, что практически не рассматривалась всерьез. В новом выпуске рубрики «Просто о сложном» — рассказ об истории открытия «застывших звезд» и о том, что происходит с пространством и временем на границах черной дыры.

Долгая история неверия

В 1783 году священник из английской деревни Торнхилл Джон Митчелл представил в журнал «Философские труды Лондонского Королевского общества» свою статью. В ней он писал, что достаточно массивная и компактная звезда будет иметь столь сильное гравитационное поле, что свет не сможет уйти от нее далеко — он будет затянут обратно за счет гравитационного притяжения. Митчелл считал, что таких объектов в космосе может быть очень много, но увидеть их невозможно — так как их свет поглощается ими же. Тем не менее теоретически их гравитационное притяжение можно обнаружить. Статья не вызвала ажиотажа в научном сообществе и прошла практически незамеченной.
Спустя несколько лет французский ученый Пьер-Симон Лаплас, незнакомый с работой Митчелла, выдвинул схожую гипотезу. Он опубликовал ее в своем труде «Система мира», однако после второго издания теория из книги исчезла — по всей видимости, Лаплас решил, что о такой дурацкой идее и говорить не стоит.

А вот в XIX веке ученым уже не могла прийти в голову мысль о невидимых звездах. Все дело в том, что ньютоновское убеждение относительно того, что свет состоит из частиц, вышло из моды. Ученые пришли к выводу, что концепция, согласно которой свет — это волна, лучше описывает явления окружающего мира. О том, как гравитация действует на волны, ничего известно не было, стало быть, и рассуждения о небесных объектах, «затягивающих» собственный свет, пришлось забыть.

Вновь вспомнили о них только в XX веке. В 1916 году, практически сразу после публикации Эйнштейном общей теории относительности, Карл Шварцшильд описал «застывшую звезду», как тогда называли такие объекты, не рассматривая процесс ее зарождения, а в 1939 этот недостающий элемент в теорию добавили Роберт Оппенгеймер и Хартланд Снайдер. И только 1969 году американский физик Джон Уилер придумал термин «черная дыра» (Уилер вообще был романтиком, и второй придуманный им термин, «кротовая нора», еще более любим фантастами).

Загробная жизнь звезды

Жизненный цикл звезды чем-то похож на человеческий — она рождается и умирает. Вначале огромное облако газа (преимущественно водорода) в космосе начинает сжиматься под воздействием собственной гравитации, его молекулы все чаще сталкиваются друг с другом, и их скорости увеличиваются. Газ разогревается, и при определенной температуре возникает реакция термоядерного синтеза, в результате которой образуется гелий. В ходе реакции выделяется тепло и излучается свет. Так возникает звезда. Тепло создает дополнительное давление, которое уравновешивает гравитационное притяжение, и звезда перестает сжиматься — в стабильном состоянии она может существовать более миллиона лет. Но рано или поздно запасы реагирующего водорода у звезды иссякают, и она начинает остывать и сжиматься.

Тут сравнение с человеческой жизнью заканчивается, потому что дальнейшая судьба светила зависит от его массы. Из небольших звезд получаются белые карлики, объекты с плотностью в сотни тонн на кубический сантиметр. В космосе их обнаружено довольно много, и наше Солнце со временем пополнит их ряды. Из более крупных светил образуются нейтронные звезды. Их размер куда меньше, чем у белых карликов, зато плотность составляет сотни миллионов тонн на кубический сантиметр.
И, наконец, если масса звезды достаточно велика, то образующаяся нейтронная звезда под воздействием гравитации сжимается все сильнее и сильнее, пока не станет черной дырой.

Выхода нет

Одним из важнейших достижений Эйнштейна было открытие природы гравитации. Ученый показал, что она, по сути, является искривлением пространства. Под воздействием массивных объектов оно «проминается», как натянутая эластичная ткань, на которую положили тяжелый предмет. Продолжая это сравнение, можно сказать, что точно так же в виде тяжелого шара можно представить и Солнце, а Земля, будучи значительно более мелким шариком, не притягивается к нему, а всего лишь вращается в получившейся воронке (с той только разницей, что настоящий шарик со временем скатился бы вниз).

Так же можно представить и рождение черной дыры — шар на натянутой эластичной ткани становится все более маленьким и плотным, и ткань все сильнее прогибается под его весом, пока наконец он не становится настолько маленьким, что она просто смыкается над ним и он пропадает из поля зрения. Примерно так происходит и в реальности: пространство-время вокруг звезды свертывается, и она пропадает из Вселенной, оставляя в ней лишь сильно искривленную область пространства-времени. В самой же черной дыре искривление пространства-времени становится бесконечным — такое состояние физики называют сингулярностью, и в нем нет ни пространства, ни времени в нашем понимании.
Из-за происходящего искривления лучи света, идущие от звезды, меняют свои траектории. Если представить себе эти лучи как конусы, вершина которых — у звезды, а «подошва» — это круг расходящегося света, то можно сказать, что в процессе коллапса эти конусы постепенно все больше наклоняются внутрь, к звезде. Наблюдателю, смотрящему на этот процесс, будет казаться, что свечение становится все более тусклым и красным (это потому что красный свет имеет наибольшую длину волны). В конце концов искривление (то есть гравитационное поле) станет настолько сильным, что ни один луч света не сможет выйти наружу. Согласно теории относительности, ничто не может двигаться быстрее света, и это означает, что начиная с этого момента ничто не может выбраться за пределы этого гравитационного поля. Эту область пространства, из которой нет выхода, и называют черной дырой. Ее граница определяется по траектории тех световых лучей, которые первыми потеряли возможность выйти наружу. Она называется горизонтом событий черной дыры — так же как, глядя из окна, мы не видим, что находится за горизонтом, так и условный наблюдатель не может понять, что происходит внутри границ невидимой мертвой звезды.

На самом деле все не так

Убеждение, что ничто не может покинуть черную дыру, было незыблемым до 70-х годов XX века. А в 1974 году Стивен Хокинг предположил, что черные дыры в результате квантовых процессов все же излучают разнообразные элементарные частицы, преимущественно фотоны. В 2010-х годах разные группы ученых в лабораторных условиях подтвердили его предположение. При этом в природе такого излучения пока не было обнаружено, как, впрочем, и самих черных дыр — Нобелевская премия за их открытие еще ждет своего счастливчика.

источник